
HP TestExec SL
Using HP TestExec SL

Notice
The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not be liable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19 (c) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
alterations is expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.
ii

n.

.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporatio

Q-STATS II is a trademark of Derby Associates, International.

Printing History
E1074-90000 — Software Rev. 1.00 — First printing - August, 1995

E1074-90005 — Software Rev. 1.50 — Rev. A - March, 1996

Note The documentation expanded into a multi-volume set of books at Rev. B

E1074-90008 — Software Rev. 1.51 — Rev. B - June, 1996

E2011-90012 — Software Rev. 2.00 — Rev. C - January, 1997

E2011-90015 — Software Rev. 2.10 — Rev. D - May, 1997

E2011-90019 — Software Rev. 3.00 — Rev. E - January, 1998

E2011-90023 — Software Rev. 4.00 — Rev. F - August, 1999
 iii

ich

e
ng a
About This Manual
This manual describes how to do tasks of interest to most users of
HP TestExec SL.

Conventions Used in this Manual
Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions

Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

Items you must specify are italicized and enclosed by angle brackets, like
this:

<filename.txt>

which you might replace by typing:

MyFile.txt

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—i.e., MyFunction()—
that do not show the function’s parameters.

Most programming examples use the C++ convention for comments, wh
is to begin commented lines with two slash characters, like this:

// This is a comment

C++ compilers also will accept the C convention of:

/* This is a comment */

The C++ convention is used here simply because it results in shorter lin
lengths, which make examples fit better on a printed page. If you are usi
C-only compiler, be sure to follow the C convention.
iv

Contents
1. Working With Testplans

A Suggested Process for Creating a Testplan...2
Preparing to Write the Testplan...2
Writing the Testplan ..4

To Create a Testplan ...5
To Specify Switching Topology Layers for a Testplan............................6
Using Tests & Test Groups in Testplans ..7

To Add a New Test/Test Group ..7
To Add an Existing Test..8
To Examine or Modify a Test/Test Group ..9
To Move a Test/Test Group Within a Testplan...................................9
To Move a Test/Test Group Across Testplans10
To Copy a Test/Test Group Within a Testplan11
To Copy a Test/Test Group Across Testplans...................................11
To Delete a Test/Test Group ...12

Controlling the Flow of Testing ...13
Using Flow Control Statements...13

Which Flow Control Statements are Available?14
What is the Syntax for Expressions?..16

Using Arithmetic Operators ..17
Using Relational Operators...17
Using Parentheses ...18

What Are the Rules for Using Flow Control Statements?19
To Insert a Flow Control Statement into a Testplan19
Interacting with Flow Control Statements20

To Branch on a Passing Test ...21
To Branch on a Failing Test ..21
To Branch on an Exception ...22
To Execute a Test/Test Group Once Per Testplan Run.....................23
To Ignore a Test...23

Running a Testplan ...25
To Load a Testplan..25
To Run an Entire Testplan...25
To Run Selected Tests in a Testplan ...26
 Contents-1

Viewing What Happens as a Testplan Runs 27
Using the Report Window to Monitor Results............................. 27

To Enable/Disable the Report Window.................................. 28
To Specify What Appears in the Report Window 28

Using the Trace Window to Monitor I/O Operations 28
To Enable/Disable the Trace Window.................................... 29
To Specify Which Tests are Traced.. 30
To Specify What Appears When Tests are Traced................. 30

To Stop a Testplan... 31
To Abort a Testplan... 32

Other Tasks Associated with Testplans.. 33
Using Global Variables in Testplans... 33

To Use a Global Variable Whose Scope is the Testplan 33
To Use a Global Variable Whose Scope is a Sequence............... 34

To Specify the Global Options for a Testplan................................... 35
To Specify Which Topology Files to Use... 35
Using Testplans & UUTs with an Operator Interface....................... 36

To Register a Testplan for an Operator Interface 36
To Register a UUT for an Operator Interface 36

Using Variants in Testplans .. 37
To Add a Variant to a Testplan.. 37
To Rename a Variant in a Testplan.. 37
To Delete a Variant from a Testplan.. 38

Examining Testplans & System Information ... 39
Overview ... 39
Which Kinds of Information Can I Examine? 39
To List Testplans & System Information.. 40
To Print Listings of Testplans & System Information 41
To Find Specific Text in Listings.. 41
To Find Specific Text in Sequences & Lists of Actions 42

Debugging Testplans .. 43
Using Interactive Controls & Flags... 43
Single-Stepping in a Testplan ... 46

Single-Stepping Through Tests.. 46
Overview... 46
To Single-Step Through the Tests in a Testplan 46
To Cancel Single-Stepping Through the Tests in a Testplan . 47
Contents-2

Contents
Single-Stepping Through Actions ..47
Overview...47
To Single-Step Through Actions ..48

Using the Watch Window to Aid Debugging....................................48
Overview ..48
To Insert a Symbol into the Watch Window................................49
To Insert a Switching Node into the Watch Window50
To Insert an Instrument into the Watch Window.........................51
To Remove an Item from the Watch Window51

Fine-Tuning Testplans ..52
Optimizing the Reliability of Testplans ..52
Optimizing the Throughput of Testplans ..53

Suggested Ways to Make Testplans Run Faster53
Using the Profiler to Optimize Testplans.....................................54

To Set Up the Profiler ...54
To Run the Profiler ...55
To View Profiler Results in HP TestExec SL.........................55
To View Profiler Results in a Spreadsheet56

Moving a Testplan ..58

2. Working With Tests & Test Groups

Specifying Parameters for a Test/Test Group...62
To Add a Parameter to a Test/Test Group...62
Modifying a Parameter for a Test/Test Group62
To Remove a Parameter from a Test/Test Group..............................63

Specifying Actions for a Test/Test Group ..64
To Add an Action to a Test/Test Group ..64
To Specify Parameters for Actions in a Test/Test Group..................66
To View Parameters for Actions in a Test/Test Group67
To Specify the Limits for a Test..67
To Remove an Action from a Test/Test Group68

To Save a Test Definition in a Library ...69
To Pass Results Between Tests/Test Groups..71
 Contents-3

1
.. 81
3

6
6

8
8
9
9

92
5

7
8
9
0
0
0
1

To Share a Variable Among Actions in a Test/Test Group.................... 73
Controlling Switching During a Test/Test Group 75

Overview of Creating a Switching Action .. 75
To Create a Switching Action ... 76
To Delete a Switching Action ... 77
To Modify a Switching Path in a Switching Action 77
To Delete a Switching Path in a Switching Action........................... 78

Specifying Variations on Tests/Test Groups When Using Variants 79
Overview ... 79
To Specify a Test/Test Group’s Characteristics for Each Variant.... 79

Viewing the Test Execution Details... 8
Overview...
To View the Test Execution Details... 8

3. Working With Actions

Things to Know Before Creating Actions.. 8
How Do I Create Actions?.. 8
Which Languages Can I Use to Create Actions?.............................. 87
Improving the Reusability of Actions... 8

Designing for Reusability.. 8
Documenting Your Actions... 8

Choosing Names for Actions.. 8
Entering Descriptions for Actions ... 90
Entering Descriptions for Parameters..................................... 90
Choosing Keywords for Actions.. 90

To Define an Action...
Using Parameters with Actions.. 9

Types of Parameters Used With Actions.. 95
To Add a Parameter to an Action.. 9
To Modify a Parameter to an Action... 9
To Delete a Parameter to an Action.. 9

Using Keywords with Actions.. 10
To Add a Keyword to an Action... 10
To Delete a Keyword from an Action... 10
To Add a Master Keyword to the List... 10
To Delete a Master Keyword from the List.................................... 101
Contents-4

Contents

0

30

31

3

36
39

0
0

Creating Actions in C ...102
Overview of the Process ..102
Writing C Actions..103

Using Parameter Blocks With a C Compiler103
Using Parameter Blocks With a C++ Compiler106

Exception Handling in C Actions..111
Using C Actions to Control Switching Paths114

Overview ..114
Using API Functions to Control Switching Pathss115
Using States to Store Switching Data ..117

Adding Revision Control Information for Actions120
Example of Creating a C Action in a New DLL121

Defining the Action..121
Specifying the Development Environment Options...................122

Specifying the Path for Libraries ..122
Specifying the Path for Include Files....................................123

Creating a New DLL Project..123
Specifying the Project Settings ..125
Writing Source Files for the Action Code..................................128
Adding Source Files to the Project...129
Verifying the Project’s Contents..13
Choosing Which Configuration to Build...................................130
Building the Project..1
Copying the DLL to Its Destination Directory...........................131

Overview...1
Creating a Custom Tool to Copy the DLL............................131
Using the Custom Tool to Copy the DLL.............................132

Example of Defining a C Action...13
Adding a C Action to an Existing DLL...134
Debugging C Actions..1

Creating Actions in HP VEE..1
Restrictions on Parameter Usage in HP VEE..................................139
Defining an HP VEE Action...14
Example of an HP VEE Action...14
 Contents-5

Debugging HP VEE Actions... 142
Error Handling in HP VEE.. 142
Controlling the Geometry of HP VEE Windows 143
Executing HP VEE Actions on a Remote System 143

Creating Actions in National Instruments LabVIEW 145
Related Files.. 146
Restrictions on Parameter Passing .. 146
Defining a National Instruments LabVIEW Action........................ 148
Example of a National Instruments LabVIEW Action 149
Setting Interface Options for National Instruments LabVIEW....... 150

Creating Actions in HP BASIC for Windows...................................... 151
Related Files.. 152
Restrictions on Parameter Usage in HP BASIC for Windows........ 152
Defining an HP BASIC for Windows Action 153
Creating an HP BASIC for Windows Server Program 153
Example of an HP BASIC for Windows Action............................. 156
Debugging HP BASIC for Windows Actions................................. 157

4. Working with Switching Topology

Defining the Switching Topology .. 160
Overview ... 160
Matching Physical Hardware to Logical Names............................. 162

Where Do the Names of Switching Paths Come From?............ 162
Using Aliases to Simplify the Names of Switching Paths......... 163
When Should I Specify Wires?.. 164
What Happens If a Node Has Multiple Names?........................ 164
How Do I Specify the Preferred Name for a Node? 165

Defining the System Layer.. 166
Defining the Fixture Layer.. 168
Defining the UUT Layer ... 170
Using the Switching Topology Editor... 171

To Create a Topology Layer .. 171
Using Aliases ... 172

To Add an Alias.. 172
To Modify an Alias... 173
To Delete an Alias .. 174
Contents-6

Contents
Using Wires..174
To Add a Wire...174
To Modify a Wire ...175
To Delete a Wire ...176

Using Modules ...176
To Add a Module ..176
To Modify a Module ...177
To Delete a Module...178

Duplicating an Alias, Wire, or Module178

5. Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Test & Action Libraries ...180
How Keywords Simplify Finding Items in Libraries180
Searching for Items in Libraries ..180

Searching for Actions in a Library...181
Searching for Tests in a Library ...182

Strategies for Searching Libraries ...183
Specifying the Search Path for Libraries...184

To Specify System-Wide Search Paths for Libraries.................185
To Specify Testplan-Specific Search Paths for Libraries186
To Remove a Path from the List of Search Paths186

Using Search Paths to Improve Testplan Portability.......................187
Using Datalogging ..188

What Happens During Datalogging?...188
What is the Behavior & Format for Logged Data?189
Controlling How Datalogging Works ...190

To Set the Datalogging Options for an Entire Testplan190
To Change the Datalogging Options for an Individual Test191
To Select the Datalogging Behavior and Format192

Using Datalogging with a Spreadsheet..193
To Configure Datalogging for Use With a Spreadsheet193
What’s Inside a Datalogging File Formatted for Spreadsheets?196
How Does the Data Appear in a Spreadsheet?...........................196
 Contents-7

Why You May Need to Reformat the Data................................ 197
To Import a Datalogging File into Microsoft Excel 97 197

Using Datalogging with Q-STATS Programs................................. 199
To Set the Learning Feature & Pass Limits Information 199
Restrictions on the Names of Tests.. 200

Managing Datalogging Files ... 200
Troubleshooting Problems with Datalogging 200

Using Symbol Tables ... 202
About Symbol Tables.. 202
Predefined Symbols in the System Symbol Table 203
How Symbols Are Defined in Flow Control Statements 205
Programmatically Interacting with Symbols................................... 206
To Examine the Symbols in a Symbol Table 206
To Add a Symbol to a Symbol Table.. 207
To Modify a Symbol in a Symbol Table... 207
To Delete a Symbol from a Symbol Table...................................... 208
Using External Symbol Tables.. 208

To Create an External Symbol Table... 208
To Link to an External Symbol Table.. 209
To Remove a Link to an External Symbol Table....................... 209

Using Auditing ... 210
To Document Testplans, Actions & Switching Topology 211
To Document Tests ... 212
To View or Print Auditing Information .. 212

6. System Administration

System Setup .. 214
Specifying the Location of the System Topology Layer................. 214
Specifying the Default Variant for a New Testplan........................ 214
Setting Up an Operator or Automation Interface 215

Overview.. 215
Setting Up an Automation Interface to Start Automatically...... 215

Starting an Automation Interface Created in Visual Basic... 215
Starting an Automation Interface Created in Visual C++ 215

Setting Up Automatic Printing of Failure Tickets 216
Specifying the Polling Interval for Hardware Handlers............. 216
Contents-8

Contents
Setting Up the Auditing Features ..217
Controlling the Appearance of the Status List217
Controlling the Operation of the Revision Editor218

Directories and Files ...220
Standard Directories ..220
Standard File Extensions ...221
Initialization Files ..222
Recommended Locations for Files ..223
Managing DLLs...224

How HP TestExec SL Searches for DLLs225
Situations That Can Cause Problems With DLLs......................226
Symptoms Associated with Loading the Wrong DLL...............227
Minimizing the Problems with DLLs...228

Managing Temporary Files ...228
Controlling System Security...229

Using the Default Security Settings ..229
User Groups..230
System Resources...230
Group Access Privileges ..230

Customizing Security Settings ..231
To Change a Password ...231
To Add a New User..232
To Modify an Existing User...233
To Delete an Existing User ..233
To Modify a User’s Privileges..233
To Add a New Group of Users...234
To Modify an Existing Group of Users......................................234

Adding Custom Tools to HP TestExec SL ...235
Syntax for Adding Custom Tools..235
To Add Entries to the Tools Menu ..237
 Contents-9

2
4

9
70
0
1

6

7

7. Working with VXIplug&play Drivers

What is VXIplug&play?... 240
How Do HP TestExec SL & VXIplug&play Work Together? 241
How Do Actions Control Instruments via VXIplug&play?................. 243
To Control a VXIplug&play Instrument from an Action..................... 246

Configuring HP TestExec SL to Use VXIplug&play Instruments . 246
Creating the Action ... 247
Using the Action in a Test... 249

Beyond VXIplug&play .. 251

8. Using String Formatting

What is a Formatted String? ... 254
The Two Types of Formatting Operations ... 255

Updating a String from its Replaceable Parameters........................ 255
Updating Replaceable Parameters from a String 256

How Does String Formatting Work?.. 258
Which Data Types are Supported for Replaceable Parameters? 259
What Happens if “Update Parameters from String” Fails?.................. 260
Notes About String Formatting.. 26
How are Formatted Strings Useful?... 26

9. Using Actions to Control Message-Based Instruments

Overview of Controlling Message-Based Instruments......................... 266
Why Use Actions to Control Message-Based Instruments?........... 266
When Can I Use Actions to Control Message-Based Instruments?267

Using Actions to Control Message-Based Instruments........................ 268
Adding the Instrument to the Switching Topology......................... 268
Which Actions Does HP TestExec SL Provide?............................. 269
Choosing Which Action to Use... 26
Setting Up the Action.. 2
Copying the Action Definition.. 27
Customizing the Action Definition... 27
Why Did You Customize the Action Definition?........................... 275
Using the Action in a Testplan.. 27
What if the Instrument Returns a Response?.................................. 277

Choosing Which Action to Use... 27
Contents-10

Contents
Setting Up the Action...277
Customizing the Action Definition ..278

Debugging Actions That Control Message-Based Instruments282
Notes for Advanced Users ..284

10. Testing Multiple UUTs

About Multi-UUT Testing..288
Why Test Multiple UUTs? ..288
What Makes Multi-UUT Testing Faster?..289
How Does HP TestExec SL Test Multiple UUTs?290
What Must You Do to Test Multiple UUTs?291
Example of a Multi-UUT Testplan..292
Symbols Used by Multi-UUT Testing ..293
More About UutPosId ...294
Multi-UUT Effects on Datalogging...295
Multi-UUT Effects on Reporting ..295
Multi-UUT Effects on Testplan Listings...295
Multi-UUT Effects on Breakpoints & Single-Stepping295
Multi-UUT Effects on Switching ..296

Testing Multiple UUTs...298
Enabling Multi-UUT Testing ..298
Creating the First UUT Position..299

Creating a UUT Topology Layer for the First UUT299
Creating & Debugging a Testplan for the First UUT Position ..299

Converting the Testplan to a Multi-UUT Version300
Globally Enabling Multi-UUT Testing300
Controlling the Flow of Testing ...301

Adding Flow Control Statements..301
Specifying Multi-UUT Options for Individual Tests............301

Adding UUT Positions to the Testplan ...303
Adding a New UUT Position ...303
Running the Testplan & Debugging the New UUT Position.....304
 Contents-11

The Multi-UUT Operator Interface .. 305
Compatibility of Single- & Multi-UUT Operator Interfaces 306

Running a Multi-UUT Testplan on a Single-UUT Interface 306
Running a Single-UUT Testplan on a Multi-UUT Interface 306

Some Differences Between the Modules .. 306
Unique Features of the Multi-UUT Operator Interface 307

Variable mbMultiUutTestplan ... 307
Shortcuts When Accessing Symbols in Symbol Tables 307
Potential Differences in the Indexing of Arrays 307

Changing the Number of UUT Positions .. 308
Considerations for Factory Automation.. 309

How are Serial Numbers Read? ... 309
What if the Testplan Reads Serial Numbers from UUTs?......... 309
What if the Testplan Gets the Testing Status from UUTs?........ 309

Index
Contents-12

1

Working With Testplans

This chapter describes how to use testplans, which are named sequences of
tests that are executed as a group to test a specific device or unit under test.

For an overview of testplans, see Chapter 3 in the Getting Started book.
1

Working With Testplans
A Suggested Process for Creating a Testplan
A Suggested Process for Creating a Testplan
Although we have no way of knowing about your specific hardware, we
recommend that you consider the following process when creating a
testplan.

Preparing to Write the Testplan

1. Gather the testing specifications and requirements for the UUT (unit
under test).

You must thoroughly understand the UUT before you can test it
effectively. This includes both the physical (such as pinouts) and
electrical characteristics of the device.

2. Plan the tests and the sequence in which they will be executed.

Determine which kinds of tests are needed in your testplan (including
tests for failure and exception handling, if desired). Determine the order
in which the tests should be executed. Given the above, determine where
to use test groups.

Tip: You may find it useful to draw a worksheet and make copies of it to
write on when planning tests. For example, the worksheet might briefly
describe the test, list the hardware resources needed, the test limits, any
setup or cleanup requirements, timing constraints, a list of input and
2

Working With Testplans
A Suggested Process for Creating a Testplan
output pins, and such. An example of a typical worksheet is shown
below.

3. Plan the system resources for each pin on the UUT.

Using the information from the previous step, be sure your test system
has the hardware resources needed to do the tests. For example, do you
have enough power supplies, signal sources, and signal detectors? If not,
you must add hardware or find a way to simplify the tests.

4. Plan and build the fixture or other means of connecting the test system’s
hardware with the UUT.

Pins on the UUT must be connected to the test system’s power supplies,
signal sources, and signal detectors. If you test various kinds of UUTs on
a single test system, you may want to use an interchangeable fixture to
make the connections. Or, you need some type of cabling to make the
necessary connections.
 3

Working With Testplans
A Suggested Process for Creating a Testplan

t

he
If you are using programmable switches, such as switching cards, to
make connections between resources and the UUT and you have
hardware handler software for those switches, you probably will want to
use the Switching Topology Editor to define your topology so you can
use switching actions in your tests.

Writing the Testplan

1. Add tests and test groups to your testplan.

2. Copy and customize existing tests from libraries where possible. Where
needed, add the tests to test groups. If there is no existing test to reuse,
create new tests from existing actions in libraries where possible. If no
suitable actions exist from which you can create a new test, create new
actions, add them to an action library, and then create a new test from
them.

3. Tune the tests for performance and reliability.

This process can be as flexible as you like. For example, you might begin
by creating actions, using them to create tests, and then using the tests to
create a testplan. But if it is more convenient—for example, if differen
people are developing the actions and the testplan—you may want to
begin with an empty testplan and then expand it by adding tests as t
actions needed to create the tests become available.

For more information about tuning tests, including how to use
HP TestExec SL’s built-in profiler, see “Optimizing the Throughput of
Testplans.”
4

Working With Testplans
To Create a Testplan

 &
To Create a Testplan
Use the Test Executive’s graphical tools to create a testplan.

1. Click in the toolbar or choose File | New in the menu bar.

2. Choose Testplan as the type of document.

3. Choose the OK button.

4. Add one or more tests or test groups to the list shown in the left pane of
the Testplan Editor.

For information about adding tests and test groups, see “Using Tests
Test Groups in Testplans.“

5. Click in the toolbar or choose File | Save in the menu bar.

6. Enter a name for the testplan.

7. Choose the Save button.
 5

Working With Testplans
To Specify Switching Topology Layers for a Testplan

the
st
logy

ation

e
with

in
To Specify Switching Topology Layers for a
Testplan
The switching topology information for a specific testplan resides in three
files whose extensions are “.ust”. These files contain information about
system, fixture, and UUT layers of switching topology. Given that one te
system can use many testplans, you must specify which switching topo
files to use for a given testplan.

Each test system has one system layer defined for it. The name and loc
of the file containing the system layer resides in HP TestExec SL’s
initialization file. This is described under “System Setup” in Chapter 6.

Although you can locate the remaining two files, which contain the fixtur
and UUT layers, wherever you like, it usually makes sense to put them
other files used with the testplan. Then you must associate these two
topology files with the testplan.

Do the following to associate the files for the fixture and UUT layers with
the testplan:

1. Load the testplan.

2. Choose Options | Switching Topology Files in the menu bar.

3. Specify the locations of the files for the fixture and UUT layers.

For an overview of switching topology, see “About Switching Topology”
Chapter 3 of the Getting Started book. For detailed information, see
Chapter 4 in this book.
6

Working With Testplans
Using Tests & Test Groups in Testplans

tton

 and
ibed

copy

 the

e

t
Using Tests & Test Groups in Testplans

Note The Testplan Editor window supports the various mechanisms that
Microsoft Windows provides to select multiple items; i.e., holding the Ctrl
key as you click multiple items; pressing and holding the mouse’s left bu
and then dragging across multiple items; and clicking the first item in a
desired list, simultaneously pressing and holding the Ctrl and Shift keys,
clicking the last item in the list. This means that many of the tasks descr
for individual tests or test groups also can apply to multiple tests or test
groups. For example, if you select multiple tests or test groups, you can
or delete them as you would a single test or test group.

To Add a New Test/Test Group

1. Click the desired insertion point in a testplan shown in the left pane of
Testplan Editor window.

The test or test group will be inserted immediately before the line
selected as the insertion point.

2. Do one of the following:

• To insert a test, click in the toolbar or choose Insert | Test in th
menu bar.

- or -

• To insert a test group, click in the toolbar or choose Insert | Tes
Group in the menu bar.

3. Do the following in the right pane of the Testplan Editor window:

a. Specify a name for the test or test group.
 7

Working With Testplans
Using Tests & Test Groups in Testplans

e

ary.

y not

he

ar.

ilar
If you are using datalogging, be aware of the following restrictions on
the names of tests or test groups:

• If your log data is processed by HP Pushbutton Q-STATS, you
must not use slashes (/ or \) in test names.

• If your log data is processed by Q-STATS II, only the first forty
letters of the test name are significant.

b. Add any desired actions to the test or test group.

See “To Add an Action to a Test/Test Group” in Chapter 2 for mor
information.

c. If you wish to use variants to provide multiple versions of the
parameters and limits, specify them.

See “To Add a Variant to a Testplan” for more information.

To Add an Existing Test

The easiest way to create a test is to reuse a similar test from a test libr

Note Be sure the search paths for test libraries are set up correctly or you ma
be able to find the test you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With a testplan loaded, choose an insertion point in the left pane of t
Testplan Editor window.

The test will be inserted immediately before the line selected as the
insertion point.

2. Click in the toolbar or choose Insert | Saved Test in the menu b

3. When the Test Libraries box appears, use it to find an existing test sim
to the one you need.
8

Working With Testplans
Using Tests & Test Groups in Testplans

up”

r

ify

 test

n

re
For more information about using the Test Libraries box’s search
features, see “Searching for Items in a Library” in Chapter 5.

4. Make a copy of the test under a new, unique name.

5. Modify the existing actions as needed.

For more information, see “To Specify Parameters for Actions in a
Test/Test Group” and “To Specify Limits for Actions in a Test/Test
Group” in Chapter 2.

6. Modify the existing parameters as needed.

For more information, see “Specifying Parameters for a Test/Test Gro
in Chapter 2.

To Examine or Modify a Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Edito
window.

2. Use the right pane of the Testplan Editor window to examine or mod
the contents of the test or test group.

See Chapter 2 for information about specifying the contents of tests and
groups.

To Move a Test/Test Group Within a Testplan

1. Select one or more tests or test groups in the left pane of the Testpla
Editor window.

2. Choose in the toolbar or Edit | Cut in the menu bar.

3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted befo
that line.
 9

Working With Testplans
Using Tests & Test Groups in Testplans

ame,

ion
roup
the
4. Choose in the toolbar or Edit | Paste in the menu bar.

To Move a Test/Test Group Across Testplans

1. Run two copies of HP TestExec SL and load the source testplan in one
and the destination testplan in the other.

2. Select one or more tests or test groups in the left pane of the Testplan
Editor window in the copy of HP TestExec SL that has the source
testplan loaded.

3. Choose in the toolbar or Edit | Cut in the menu bar of the copy of
HP TestExec SL that has the source testplan loaded.

4. Click the desired new location for the test or test group in the left pane of
the Testplan Editor window in copy of HP TestExec SL that has the
destination testplan loaded.

If you click an existing line, the test or test group will be inserted before
that line.

5. Choose in the toolbar or Edit | Paste in the menu bar of the copy of
HP TestExec SL that has the destination testplan loaded.

When moving tests or test groups across testplans, the following rules apply
to testplan variants:

• If the source and destination testplans have a variant with the same n
tests are simply moved and the variant’s attributes—i.e., its name,
parameters, and test limits—are preserved.

• If the source testplan has a variant that does not exist in the destinat
testplan, the attributes for the variant associated with the test or test g
being moved are lost. In other words, a new variant is not created in
destination testplan.
10

Working With Testplans
Using Tests & Test Groups in Testplans

rce
ed.
rce

n

re

ne

n

 of

e of
• If the destination testplan has a variant that does not exist in the sou
testplan, a new variant is created for the test or test group being mov
This new variant assumes the attributes of the first variant in the sou
testplan, which typically is the variant named “Normal.”

To Copy a Test/Test Group Within a Testplan

1. Select one or more tests or test groups in the left pane of the Testpla
Editor window.

2. Choose in the toolbar or Edit | Copy in the menu bar.

3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted befo
that line.

4. Choose in the toolbar or Edit | Paste in the menu bar.

To Copy a Test/Test Group Across Testplans

1. Run two copies of HP TestExec SL and load the source testplan in o
and the destination testplan in the other.

2. Select one or more tests or test groups in the left pane of the Testpla
Editor window in the copy of HP TestExec SL that has the source
testplan loaded.

3. Choose in the toolbar or Edit | Copy in the menu bar of the copy
HP TestExec SL that has the source testplan loaded.

4. Click the desired new location for the test or test group in the left pan
the Testplan Editor window in copy of HP TestExec SL that has the
destination testplan loaded.
 11

Working With Testplans
Using Tests & Test Groups in Testplans

ame,

ion
roup
the

rce
ied.
rce

ow.
If you click an existing line, the test or test group will be inserted before
that line.

5. Choose in the toolbar or Edit | Paste in the menu bar of the copy of
HP TestExec SL that has the destination testplan loaded.

When copying tests or test groups across testplans, the following rules apply
to testplan variants:

• If the source and destination testplans have a variant with the same n
tests are simply copied and the variant’s attributes—i.e., its name,
parameters, and test limits—are preserved.

• If the source testplan has a variant that does not exist in the destinat
testplan, the attributes for the variant associated with the test or test g
being copied are lost. In other words, a new variant is not created in
destination testplan.

• If the destination testplan has a variant that does not exist in the sou
testplan, a new variant is created for the test or test group being cop
This new variant assumes the attributes of the first variant in the sou
testplan, which typically is the variant named “Normal.”

To Delete a Test/Test Group

1. Select a test or test group in the left pane of the Testplan Editor wind

2. Choose Edit | Delete in the menu bar.
12

Working With Testplans
Controlling the Flow of Testing

g
 to
Controlling the Flow of Testing

Using Flow Control Statements

Note You specify flow control statements in predefined, “fill in the blanks” dialo
boxes. If you make an error in entering the syntax, you will be prompted
correct it.
 13

Working With Testplans
Controlling the Flow of Testing
Which Flow Control Statements are Available?

HP TestExec SL supports the following statements that let you control the
flow of testing in a testplan. (See the following topic for the syntax of
expressions in flow control statements.)

if...then...else Conditionally executes one or more statements in the
testplan, depending upon the value of an expression.

if Expression then
[statements]

[else
[statements]]

end if

Example:

if System.RunCount = 5 then
test Test1

else
test Test2

end if

for...next Repeats one or more statements in the testplan a
specified number of times. A negative value for Step
causes the counter to decrement.

for Variable = Start to End step Step
[statements]

next

Example:

for Counter = 1 to 5 step 1
test Test1

next
14

Working With Testplans
Controlling the Flow of Testing
for...in Repeats one or more statements in the testplan for each
value in a list of arguments.

for Variable in Group
[statements]

next

Example:

A = 4
B = 2
C = 9
for SequenceLocals.MyVariable in C,A,B

! Assume that SequenceLocals.MyVariable
! is passed as a parameter to Test1
test Test1

next

loop Repeats one or more statements in the testplan until a
condition specified in an expression is satisfied.

loop
[statements]
exit if Expression

end loop

Example:

loop
test Test1
test Test2
exit if SequenceLocals.MyVariable = 3

end loop
 15

Working With Testplans
Controlling the Flow of Testing

tion

It also supports the miscellaneous syntax elements listed below, which you
can use with the flow control statements.

What is the Syntax for Expressions?

Expressions in HP TestExec SL’s flow control statements are a combina
of operators, variables, and parentheses that use the BASIC-like syntax
described in the following topics.

= (assignment operator) Sets a variable to a value.

Variable = Value

Example:

X = 2
SequenceLocals.MyVariable = 7

comment Non-executing line used to document a
testplan.

Example:

! This is a comment

else, end if, next, end
loop, exit if

Syntax elements used with the flow control
statements. Some of these are required and
others optionally extend the functionality of the
flow control statements.
16

Working With Testplans
Controlling the Flow of Testing

eric
f

Using Arithmetic Operators

HP TestExec SL lets you use the math operators listed below in expressions
in flow control statements.

Using Relational Operators

HP TestExec SL’s relational operators let you compare two string or num
expressions in flow control statements. They follow the general syntax o

result = expr1 <operator> expr2

Addition The addition operator adds two numbers or concatenates
two strings. The operands can be any two numeric
expression or strings. However, they must both be of the
same type (either numeric or string). If the variables are
strings, they will be concatenated.

result = expr1 + expr2

Subtraction The subtraction operator subtracts two numbers. The
operands can be any numeric expression.

result = expr1 - expr2

Multiplication The multiplication operator multiplies two numbers. The
operands can be any numeric expression.

result = expr1 * expr2

Division The division operator divides two numbers. The operands
can be any numeric expressions.

result = expr1 / expr2
 17

Working With Testplans
Controlling the Flow of Testing
where result is any numeric variable. You can use the relational operators
listed below to determine if result is True (any non-zero value) or False
(zero).

Using Parentheses

If desired, you can use parentheses to force the order of execution of
operators in expressions in flow control statements. Parentheses cause
individual statements inside the parentheses to be evaluated first. This
evaluation is then used with other operators in an expression to evaluate the
overall statement.

Refer to the example below, which shows an assignment statement that
includes arithmetic operators.

A = 2 + 3 * 4

Here, the value of A evaluates to 14 because the normal order of operator
precedence is multiplication before addition.

The next example uses parentheses in the assignment statement to override
the normal order of operator precedence. Here, the value of A evaluates to

Operator Meaning True if... False if...

< Less than expr1 < expr2 expr1 >= expr2

<= Less than or equal to expr1 <= expr2 expr1 > expr2

> Greater than expr1 > expr2 expr1 <= expr2

>= Greater than or equal to expr1 >= expr2 expr1 < expr2

= Is equal to expr1 = expr2 expr1 <> expr2

<> Not equal to expr1 <> expr2 expr1 = expr2
18

Working With Testplans
Controlling the Flow of Testing

as

l

oks

ted

a
itly

ew

ired
20 because the parentheses force the addition of 2 and 3 before multiplying
their sum by 4.

A = (2 + 3) * 4

What Are the Rules for Using Flow Control Statements?

Keep the following in mind when using flow control statements:

• Variable names can be either the name of the symbol by itself, such
“A” or “MySymbol”, or include the name of an internal or external
symbol table, such as “SequenceLocals.MySymbol”.

Note: Variables in flow control statements must use symbols in globa
symbol tables (SequenceLocals, System, or external).

• If you use a variable in a flow control statement but do not specify a
symbol table as part of the variable’s declaration, HP TestExec SL lo
for an existing symbol with the same name in the SequenceLocals
symbol table. If there is no existing symbol, one is automatically crea
in SequenceLocals.

Note Symbols that are created automatically like this default to a numeric dat
type. If you need a different data type, such as a string, you must explic
create the symbol prior to using it.

To Insert a Flow Control Statement into a Testplan

1. In the left pane of the Testplan Editor window, choose the desired
insertion point in your testplan.

You can insert a statement on a blank line or into existing tests or
statements. If you click to highlight an existing test or statement, the n
statement will be inserted immediately preceding it.

2. Choose Insert | Other Statements in the menu bar and select the des
kind of flow control statement.
 19

Working With Testplans
Controlling the Flow of Testing

e as

—an

 use

h is
un”
3. Use the right pane of the Testplan Editor window to enter any
declarations required for the specific kind of flow control statement you
chose.

Interacting with Flow Control Statements

Note The syntax for accessing a symbol in a symbol table from a flow control
statement is <symbol table. symbol>. If you do not specify <symbol table>,
its value defaults to SequenceLocals.

If desired, you can directly manipulate the value of a variable in a flow
control statement or use the variable’s value to control some aspect of
testing. Then, examining or modifying the value of the symbol is the sam
examining or modifying the value of the variable in the testplan.

How is this useful? Suppose you were testing a module whose stimulus
input voltage, perhaps—needed to vary within predefined limits until the
module either passed or failed. You could:

1. Execute the test for that module in a “for...next” loop, such as:

for Voltage = 9.9 to 10.1 step 0.1
ModuleTest

next

2. In the test for the module, query the value of the counter variable and
it to vary the stimulus.

ModuleTest
...Get value of Voltage from symbol table
...Use value of Voltage to increment input voltage

Other examples of using flow control statements with symbols include:

• Branching on passing or failing tests, which are described under “To
Branch on a Passing Test” and “To Branch on a Failing Test”

• Executing a test or test group only once per run of the testplan, whic
described under “To Execute a Test/Test Group Once Per Testplan R
20

Working With Testplans
Controlling the Flow of Testing

us
“on

hat

d as

us
“on

To Branch on a Passing Test

You can use an “if...then” statement to examine the predefined TestStat
symbol in the System symbol table and programmatically implement an
pass branch to” feature based on the results of a test; e.g.,

test Test1
if System.TestStatus = 0 then

! If Test1 passed run Test2
test Test2

end if
test Test3

1. In the left pane of the Testplan Editor window, click to select the line t
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus = 0” for the value of
Expression in the right pane.

4. Place any tests, test groups, or statements you wish to have execute
“branch on pass” within the boundaries of the “if...then” statement.

To Branch on a Failing Test

You can use an “if...then” statement to examine the predefined TestStat
symbol in the System symbol table and programmatically implement an
fail branch to” feature based on the results of a test; e.g.,

test Test1
if System.TestStatus >= 1 then

! If Test1 failed run Test2
test Test2

end if
test Test3

Or, you can use the graphical On Fail Branch To feature that is built into
each test.
 21

Working With Testplans
Controlling the Flow of Testing

d as

 of

ow.

the

ht

.

Do either of the following:

1. In the left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus >= 1” for the value of
Expression in the right pane.

4. Place any tests, test groups, or statements you wish to have execute
“branch on fail” within the boundaries of the “if...then” statement.

- or -

1. In either the Main or Exception sequence, click a test in the left pane
the Testplan Editor window.

2. Choose the Options tab in the right pane of the Testplan Editor wind

3. Click the arrow to the right of “On Fail Branch To” to invoke a list of
tests to which the current test can branch if a failure occurs.

The default value of “<Continue>” means that if the current test fails,
next test in the list will be executed; i.e., there is no branching.

4. Click a test in the list to select it as the desired branch.

To Branch on an Exception

1. In the left pane of the Testplan Editor window, click the arrow to the rig
of “Testplan Sequence”.

2. Choose “Exception” in the list.

3. Add one or more tests to the list of tests for the Exception sequence
22

Working With Testplans
Controlling the Flow of Testing

nt
 or

ere
 test

ies of

 the
they
This list of tests will be executed if an exception occurs when executing
the testplan.

4. Click the arrow to the right of “Testplan Sequence”.

5. Choose “Main” in the list to return to the Main—i.e., non-exception—
sequence of tests.

To Execute a Test/Test Group Once Per Testplan Run

You can use an “if...then” statement to examine the predefined RunCou
symbol in the System symbol table and have specific tests, test groups,
statements executed only once each time the testplan runs; e.g.,

test Test1
if System.RunCount = 1 then

! Execute Test2 the first time the testplan is run
test Test2

end if
test Test3

1. In the left pane of the Testplan Editor window, click to select a line wh
you wish to insert an “if...then” statement to bound one or more tests,
groups, or statements to be executed only once per testplan run.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.RunCount = 1” for the value of
Expression in the right pane.

4. Place the desired tests, test groups, or statements within the boundar
the “if...then” statement.

To Ignore a Test

If desired, you can use the “Ignore this test” feature to ignore a test when
testplan is run. Because no integrity checking is done on ignored tests,
are useful when you wish to insert non-working tests during testplan
development and finish them later. Also, you can use ignored tests in
 23

Working With Testplans
Controlling the Flow of Testing

w.
conjunction with variants so that one variant of a testplan executes different
tests than does another variant.

As shown below, an ignored test has a small cross beside it in the sequence
of tests.

1. With a testplan loaded, in the left pane of the Testplan Editor window
click to select the test to be ignored.

Note If you are using variants, specify which variant to use before telling the Test
Executive to ignore a test. For more information about variants, see
“Testplan Variants” in Chapter 3 of the Using HP TestExec SL book.

2. Choose the Options tab in the right pane of the Testplan Editor windo

3. Check the box labeled “Ignore this test”.
24

Working With Testplans
Running a Testplan
Running a Testplan

To Load a Testplan

Load a testplan so you can examine, modify, or run it.

1. Click in the toolbar or choose File | Open in the menu bar.

2. Type the name of an existing testplan file (.tpa) or use the graphical
browser to find an existing testplan.

3. Choose the Open button.

To Run an Entire Testplan

Run a testplan to execute the tests in it.

1. Load the testplan, if needed.

2. (optional) If you wish to use a testplan variant other than the default,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Options in the
menu bar.

b. On the Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Choose in the toolbar or choose Debug | Go in the menu bar.
 25

Working With Testplans
Running a Testplan
To Run Selected Tests in a Testplan

Run selected tests in a testplan to exercise the functionality of a subset of the
testplan.

Caution Running selected tests is a powerful feature for debugging testplans.
However, its degree of safety and effectiveness depends on the setup and
cleanup tasks associated with tests. For best results, be sure you either know
what state hardware is in before and after each test or use a setup/cleanup
action to specify explicitly the entry and exit conditions for each test. If the
tests you select to run appear inside a test group, the setup/cleanup tasks
associated with the test group will be run.

1. Load the testplan if it is not already loaded.

2. (optional) If you wish to use a testplan variant other than the default,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Options in the
menu bar.

b. On the Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Select one or more tests by holding down the Ctrl key and clicking them
in the left pane of the Testplan Editor window.

Tip: You can select an inclusive range of tests by holding the Ctrl key and
clicking a test at the start of the desired range, holding the Shift key
without releasing the Ctrl key, and then clicking a test at the end of the
desired range.
26

Working With Testplans
Running a Testplan

ft

 a
4. Do either of the following to run the selected tests:

• Choose Debug | Run Selected Tests

- or -

• Right-click on one of the selected tests and choose “Run Selected
Tests” from the menu that appears.

The selected tests will be run in the order in which they appear in the le
pane of the Testplan Editor window.

Viewing What Happens as a Testplan Runs

Using the Report Window to Monitor Results

As shown below, the Report window lets you monitor the results as a
testplan runs.

Tip: You may want to minimize the Report window if you wish to examine
report later but do not want the Report window appearing all the time.
 27

Working With Testplans
Running a Testplan

in a
To Enable/Disable the Report Window

• With a testplan loaded, click in the toolbar or choose
Window | Report in the menu bar.

A check mark appears to the left of Report in the upper region of the
Window menu when the Report window is enabled.

To Specify What Appears in the Report Window

1. With a testplan loaded, click in the toolbar or choose
View | Testplan Options in the menu bar.

2. When the Options box appear, choose its Reporting tab.

3. Enable/disable any or all of the following check boxes under Report.

4. Choose the OK button.

Using the Trace Window to Monitor I/O Operations

As shown below, the Trace window lets you dynamically monitor I/O
operations with hardware, such as instruments and switching modules,

Passed tests If enabled, information about tests that pass appears in
the Report window.

Failed tests If enabled, information about tests that fail appears in
the Report window.

Exceptions If enabled, information about exceptions that occur
while executing the testplan appears in the Report
window.
28

Working With Testplans
Running a Testplan

fy
olon
 the
ls a
m

he
test system as a testplan runs. Options associated with it let you specify
when to trace tests and how much information to gather during tracing.

Trace information appears in named “streams” of information that identi
the information’s source. The name of the stream is followed by a semic
and the status message for that stream. In the example above, MUX3 is
name of a trace stream whose source is a hardware handler that contro
switching module whose logical name is “MUX3”. Status information fro
MUX3, such as “Closed element [row 0, column 0]”, describes what is
happening at MUX3 as the testplan runs. “Scope” is another stream in t
example.

Using the Trace window is a three-step process. You must:

1. Enable the Trace window

2. Specify which tests to trace

3. Specify what kind of trace information to display for each traced test

To Enable/Disable the Trace Window

• With a testplan loaded, choose Window | Trace in the menu bar.
 29

Working With Testplans
Running a Testplan
As shown below, a check mark appears to the left of Trace in the upper
region of the Window menu when the Trace window is enabled.

To Specify Which Tests are Traced

1. With a testplan loaded, in the left pane of the Testplan Editor window
choose one or more tests to be traced.

2. Choose Debug | Set Trace in the menu bar.

As shown below, a trace icon appears to the left of traced tests.

Tip: A quick way to select all tests for tracing is to choose a test in the left
pane of the Testplan Editor window, type Ctrl-a or choose Edit | Select All in
the menu bar, and then choose Debug | Set Trace in the menu bar.

To Specify What Appears When Tests are Traced

1. With a testplan loaded, choose Debug | Trace Settings in the menu bar.
30

Working With Testplans
Running a Testplan
2. Enable/disable any or all of the following items under Trace Settings.
Each corresponds to a named stream of trace information.

As shown below, a check mark appears next to the names of streams selected
for tracing.

To Stop a Testplan

When you stop a testplan, execution halts when the current operation, such
as executing an action, has finished.

User Trace If enabled, user-defined trace information appears for
actions in traced tests as the testplan runs. This is the
default stream for trace information sent from actions.

“User-defined trace information” means information
programmatically sent to the Trace window from
actions via API functions such as UtaTrace(). See
the Reference book for more information about APIs
used for tracing.

Test If enabled, test names appear for traced tests in the
Trace window as the testplan runs.

Test Details If enabled, detailed information about traced tests
appears in the Trace window as the testplan runs.

other Some actions, hardware handlers, or instrument
drivers add other stream names to the Trace settings
menu.

API functions such as UtaTraceEx() and
UtaHwModTraceEx() let you send trace
information in named streams from actions and
hardware handlers, respectively. See the Reference
book for more information about APIs used for tracing.
 31

Working With Testplans
Running a Testplan

ad.

hat

ting
• Choose Debug | Stop or in the menu bar or in the toolbar.

Note If you need to halt a testplan immediately, use the Abort command inste

To Abort a Testplan

When you abort a testplan, execution halts immediately regardless of w
the testplan is doing.

• Choose Debug | Abort or in the menu bar or in the toolbar.

Note If you wish to complete the current operation in progress—such as execu
an action—before halting, use the Stop command instead.
32

Working With Testplans
Other Tasks Associated with Testplans

ol is

l

d

”

e.
l
lan.

w.

 to
Other Tasks Associated with Testplans

Using Global Variables in Testplans

Global variables let actions share data across tests in a testplan. The scope of
a global variable can be:

• The entire testplan, which means the symbol is stored in an external
symbol table or in the System symbol table.

• Restricted to a single sequence in a testplan, which means the symb
stored in the SequenceLocals symbol table.

For detailed information about using symbols tables, see “Using Symbo
Tables” in Chapter 5.

Note By default, HP TestExec SL stores some global information in predefine
symbols in the System symbol table; see “Predefined Symbols” in
Chapter 5.

To Use a Global Variable Whose Scope is the Testplan

1. With a testplan loaded, use the Symbol Tables box (View | Symbol
Tables) to declare a new symbol in an external symbol table.

Example: The name of the external symbol table is “ExtSymTable.sym
and the name of the symbol in it is “ExtSymbol”.

Note: If there is no existing external symbol table to hold your global
variable, use File | New and choose Symbol Table to create a new on
Then choose the Link to External Symbol Table button in the Symbo
Tables box to make the externally stored symbol visible to your testp

2. Choose the Actions tab in the right pane of the Testplan Editor windo

3. In the list of actions, choose an action that has a parameter you wish
associate with the global variable.
 33

Working With Testplans
Other Tasks Associated with Testplans

rest.

le.

 by
le.

ain

ed in

w.

 to

rest.
Example: The name of the parameter is “dutvoltage”.

4. Click the Name column in the row that contains the parameter of inte

5. Click the button to invoke the editor for the parameter.

6. When the editor for the parameter appears, enable references a symbol if
it is not already enabled.

7. Use the Available Tables list to select the external symbol table that
contains the global variable you created earlier.

8. Use the Available Symbols list to select the name of the global variab

9. Choose the OK button.

Example: The value of parameter “dutvoltage” now is
“ExtSymTable.ExtSymbol”; i.e., the value of the parameter is determined
the value of symbol “ExtSymbol” in the symbol table named ExtSymTab

To Use a Global Variable Whose Scope is a Sequence

1. In the left pane of the Testplan Editor window choose a sequence—M
or Exception—in which to use the global variable.

2. If the chosen sequence does not already have a suitable symbol defin
its SequenceLocals symbol table, create one.

Example: Assume the name of the global variable is “GlobalVar”.

3. Choose the Actions tab in the right pane of the Testplan Editor windo

4. In the list of actions, choose an action that has a parameter you wish
associate with the global variable.

Example: The name of the parameter is "dutvoltage".

5. Click the Name column in the row that contains the parameter of inte
34

Working With Testplans
Other Tasks Associated with Testplans

ned
 for

 the

 file.

ted
6. Click the button to invoke the editor for the parameter.

7. When the editor for the parameter appears, enable references a symbol if
it is not already enabled.

8. Use the Available Tables list to select the SequenceLocals symbol table.

9. Use the Available Symbols list to select the name of the global variable.

10.Choose the OK button.

Example: The value of parameter “dutvoltage” now is
“SequenceLocals.GlobalVar”; i.e., the value of the parameter is determi
by the value of variable “GlobalVar” in the SequenceLocals symbol table
the chosen sequence.

To Specify the Global Options for a Testplan

1. With a testplan loaded, click in the toolbar or choose
Options | Testplan Options in the menu bar.

2. Use the features on the various tabs in the Testplan Options box to
specify the global options for the current testplan.

To Specify Which Topology Files to Use

1. With a testplan loaded, choose Options | Switching Topology Files in
menu bar.

2. Type the name of a topology file for the fixture layer or click the
associated Browse button and use the graphical browser to choose a

3. Type the name of a topology file for the UUT layer or click the associa
Browse button and use the graphical browser to choose a file.

4. Choose the OK button.
 35

Working With Testplans
Other Tasks Associated with Testplans

of
h
ef

f the

s.

r to
cally
ture,
en

.

s.
Note Topology files have a “.ust” extension; e.g., “fixture1.ust”.

Using Testplans & UUTs with an Operator Interface

To Register a Testplan for an Operator Interface

A typical operator interface lets production operators choose from a list
testplans to run. You must manually edit file “tstexcsl.ini” to specify whic
testplans appear in the list, which variant is chosen by default, and a bri
description of what the testplan does.

1. Open file “tstexcsl.ini” (in directory “<HP TestExec SL home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more testplans to the [Testplan Reg] section o
file.

Note The file contains descriptive comments about the formats of these entrie

3. Save the updated file and exit the editor.

To Register a UUT for an Operator Interface

Some operator interfaces let production operators use a bar code reade
scan the information for a UUT, and then parse the bar code to automati
load the appropriate testplan. If your operator interface supports this fea
you must manually edit file “tstexcsl.ini” to specify the association betwe
UUTs and testplans.

1. Open file “tstexcsl.ini” (in directory “<HP TestExec SL home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more UUTs to the [UUT Reg] section of the file

Note The file contains descriptive comments about the formats of these entrie

3. Save the updated file and exit the editor.
36

Working With Testplans
Other Tasks Associated with Testplans

ts for

eful
es

der

ts

he

sing

riant
Using Variants in Testplans

Variants let you create named variations on the contents of a testplan. After
you create a testplan’s variants, you can specify the parameters and limi
the tests and test groups in each variant. Because they let you use one
testplan with n different sets of test limits and parameters, variants are us
where one UUT is very similar to another except for slightly different valu
for its test limits or parameters.

To Add a Variant to a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, choose the Add button.

3. In the Add Variant box, type a name for the new variant in the field un
New Variant.

4. Choose a template for the new variant from the list of existing varian
shown under Based On.

Tip: Base the new variant on whichever existing variant is most like t
new one.

5. Choose the OK button.

For information about specifying the contents of variants after you have
created them, see “Specifying Variations on Tests/Test Groups When U
Variants” in Chapter 2.

To Rename a Variant in a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, click the name of an existing va
in the list under Current Variants.

3. Choose the Rename button.
 37

Working With Testplans
Other Tasks Associated with Testplans
4. In the Rename Variant box, choose the name of an existing variant from
the list shown under Variant Name.

5. Type a new name for the variant in the field under New Name.

6. Choose the OK button.

To Delete a Variant from a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

Note: You cannot delete Normal, which is the default variant.

3. Choose the Delete button.

4. Choose the OK button.
38

Working With Testplans
Examining Testplans & System Information
Examining Testplans & System Information

Overview

The Listing window lets you view or print information about various aspects
of your testplans and hardware controlled by your test system. The example
below shows how you can view a descriptive listing of the tests in a testplan.

Which Kinds of Information Can I Examine?

The categories of information you can examine or print in the Listing
window include:

Actions Lists detailed information about actions in the current
testplan, including action names, source file names, and
routine names

Symbol tables Lists the symbols used in symbol tables in the current
testplan.
 39

Working With Testplans
Examining Testplans & System Information

by
g
es,

d
To List Testplans & System Information

1. Choose View | Listing in the menu bar.

Testplan Audit Lists auditing information for the current testplan

Testplan Lists detailed information about the current testplan,
including test groups, tests, actions, variants, and run
options.

Tests Lists detailed information about tests in the current
testplan, including test names, actions, variants, source
files names, and routine names.

Adjacencies Lists all topology adjacencies—i.e., nodes separated
a switching element—for the current testplan, includin
preferred node names, adjacency names, module nam
and switching elements and their positions.

Node Labels Lists all node labels for the current testplan, including
label names, preferred node names that are aliased,
descriptions, and keywords.

Instruments Lists information about instruments controlled by the
current testplan.

Switches Lists information about switching hardware controlled
by the current testplan.

Fixture Layer Lists topology information about connections on the
fixture topology layer, which includes aliases, wires,
and modules.

System Layer Lists topology information about connections on the
system topology layer, which includes aliases, wires,
and modules.

UUT Layer Lists topology information about connections on the
UUT topology layer, which includes aliases, wires, an
modules.
40

Working With Testplans
Examining Testplans & System Information
2. Choose which type of listing to view.

To Print Listings of Testplans & System Information

1. Choose View | Listing in the menu bar.

2. Choose which type of listing to view.

3. Click in the toolbar or choose File | Print in the menu bar.

4. Set the printing options as desired.

5. Choose the OK button.

Tip: You can use File | Print Preview in the menu bar to see how a listing will
look before printing it.

To Find Specific Text in Listings

If desired, you can search any of the various listings of system information
for a specific word or phrase.

1. If you have not already done so, generate the listing that you wish to
search.

2. With the window in which the listing appears active, click in the
toolbar or choose Edit | Find in the menu bar.

3. In the "Find what" field, specify the text for which you wish to search.

Tip: Check the "Match case" box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the "Find
what" field.

Tip: Use the Direction option to choose which direction to search from
the current position in the listing.

4. Choose the Find Next button.
 41

Working With Testplans
Examining Testplans & System Information

ditor

e of

ane

d in

.

d

l

a
To Find Specific Text in Sequences & Lists of Actions

If desired, you can search for a word or phrase in:

• The current sequence that appears in the left pane of the Testplan E
window

This lets you find items such as a specific test in a testplan or the nam
a specific variable used in a flow control statement.

• The list of action names that appears on the Actions tab in the right p
of the Testplan Editor window

This lets you find a specific action in a list of actions.

1. With a testplan loaded and the Testplan Editor window active, click
in the toolbar or choose Edit | Find in the menu bar to invoke the Fin
Sequence/Actions box.

2. In the "Find What" field, specify the text for which you wish to search

Tip: Check the "Match Case" box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the "Fin
What" field.

Tip: Check the "Whole Word Only" box if you do not wish to find partia
forms of the word or phrase.

Tip: If desired, you can restrict the range of searching by
selecting/deselecting options under Search.

3. Choose the Find Next button.

Tip: The drop-down list under the "Find What" field retains words and
phrases used in previous searches. Use this list to quickly respecify
previous search without further typing.
42

Working With Testplans
Debugging Testplans

res

tests
des

 test,

Debugging Testplans
As you develop testplans and their components you need to verify their
operation and any fix problems that arise. HP TestExec SL’s debug featu
let you interact with testplans and their components as they execute.

If you are using C/C++ to develop actions, also see “Debugging C/C++
Actions” in Chapter 3.

Using Interactive Controls & Flags

Once started, a testplan normally runs from beginning to end, executing
in the order in which they appear in it. However, the Test Executive provi
several features you can use to modify the running of a testplan. These
features can be particularly useful when you are debugging a testplan or
or when you need to stop or pause the testplan at a specific place while
troubleshooting a UUT.

There are two main kinds of features you can use to control testplans:

Interactive
Controls

These are features such as Stop/Continue, Restart, Step,
Stop, and Pause. They are interactive insofar as using them
causes an immediate response.

Flags You can set “flags”—i.e., markers—in the testplan. A flag is
acted upon if it is encountered as the testplan runs. You can
set a flag that marks a test to be stopped upon, skipped,
traced, or have its actions single-stepped. Also, you can
clear an individual flag or clear all flags for selected tests.
 43

Working With Testplans
Debugging Testplans

plan,
As shown below, these features appear as options under the Debug menu in
the menu bar.

When you use the Debug menu’s options to set a flag for a test in a test
one of the icons shown below appears to the left of the test.

This icon... Means that...

A breakpoint has been set for the test, which means the
testplan will execute until the breakpoint is encountered,
and then stop executing immediately before the marked
test.

Items marked in the testplan will be skipped; i.e., the
testplan will not execute the marked items.

Be aware that skipping a test is not the same as ignoring it
(see “Ignoring a Test” earlier in this chapter); the overall
integrity of skipped tests is checked, but that of ignored
tests is not.

The test will be traced, which means that status information
will appear in the Trace window as the test executes.

Flags

Interactive
controls
44

Working With Testplans
Debugging Testplans
As a shortcut when setting flags, you can select a test in the left pane of the
Testplan Editor window and then right-click to invoke the menu shown
below.

Tip: If desired, you can select multiple tests in a testplan and simultaneously
set or clear all of their flags.

Actions in the marked test will be single-stepped. The
testplan will pause at the first action in the test, and you can
use either the Step command in the Debug menu or the

 icon in the toolbar to execute the test’s actions one at
a time.

A combination of the trace and single-step icons; i.e., the
marked test will be traced as you single-step through it.
 45

Working With Testplans
Debugging Testplans

s and

 you
inter

e

tep
Caution If you add flags and then save a testplan, the flags are saved with it. Be sure
to remove flags from testplans before releasing them to production. For
example, a breakpoint flag can cause the testplan to stop executing
prematurely and leave the operator interface “hung.”

Single-Stepping in a Testplan

Single-stepping in a testplan lets you pause as needed to verify that test
actions are working correctly.

Single-Stepping Through Tests

Overview

If desired, you can single-step through the tests in a testplan. Each time
single-step, the testplan executes one test, halts, and then displays a po
icon that identifies the next test to be executed.

In the example below, test ProfilerDemoTest1 has been executed and th
testplan has halted pending execution of test ProfilerDemoTest2.

To Single-Step Through the Tests in a Testplan

• With a testplan loaded, click in the toolbar or choose Debug | S
Test in the menu bar.
46

Working With Testplans
Debugging Testplans

he
t test
tion

Test

tion
is 10.
To Cancel Single-Stepping Through the Tests in a Testplan

• While single-stepping through a testplan, click in the toolbar or
choose Debug | Stop in the menu bar.

Single-Stepping Through Actions

Overview

Each test in a testplan contains one or more actions. If desired, you can
single-step through the actions. This can be useful if you wish to verify t
results of each action as a test executes. For example, you can connec
equipment to the UUT, pause on a specific action, and verify that the ac
is interacting correctly with the UUT.

When the testplan is paused while single-stepping through actions, the
Debug Information box shown below appears.

Here, the test’s name is ProfileDemoTest2 and it contains an execute ac
named ProfilerDemo that uses a parameter named Count whose value
The test is paused on ProfilerDemo.
 47

Working With Testplans
Debugging Testplans

re

ore

r

 the

ams.
ols,
To Single-Step Through Actions

1. With a testplan loaded, in the left pane of the Testplan Editor window
click a test whose actions you wish to step through one at a time.

2. Choose Debug | Set Action Step in the menu bar or right-click and
choose Set Action Setup from the menu that appears.

3. Run the testplan as usual.

4. When the test pauses on an action and the Test Debug Information box
appears, make debugging measurements or select an item in the list under
Test Operation Names and examine its characteristics.

5. Do one of the following:

• To single-step to the next action in the test (if the test contains mo
than one action), choose the Step button.

- or -

• To proceed to the next test without single-stepping through any m
actions in the current test, choose the Continue button.

- or -

• To stop after executing the current test, choose in the toolba
and then choose the Continue button.

6. When you have finished single-stepping, clear the flags used to mark
tests.

Using the Watch Window to Aid Debugging

Overview

Many programming environments provide a “watch” feature that lets you
examine the values of variables and expressions while debugging progr
In a similar fashion, HP TestExec SL lets you specify items such as symb
48

Working With Testplans
Debugging Testplans

and

nly

s

to
instruments1, or switching paths to be watched when debugging a testplan.
You use the Insert menu to place these items into the Watch window, as
shown below, and then examine them when the testplan is paused, such as
while single-stepping through actions.

The name of the symbol table in which a symbol resides is prefixed to the
name of the symbol. In the example above, the symbol named TestStatus
appears in the symbol table named System—i.e., System: TestStatus—
its current value is zero.

Note To ensure that testplans execute rapidly, the Watch window is updated o
when testplan execution pauses or stops.

To Insert a Symbol into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., it
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, click its border
make it active.

1. You can watch instruments only when using specific driver software from
Hewlett-Packard.
 49

Working With Testplans
Debugging Testplans

s

 to

se

 list
2. Choose Insert | Symbols in the menu bar.

3. When the Select Symbol to Watch box appears, do the following in it:

a. Choose a symbol table from the list under Available Tables.

b. Choose a symbol from the list under Available Symbols.

c. Choose the OK button.

For more information about symbol tables, see “Using Symbol Tables” in
Chapter 5.

To Insert a Switching Node into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., it
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, clicks its border
make it active.

2. Choose Insert | Switching Node in the menu bar.

Tip: As a shortcut when setting watches on all switching nodes, choo
Insert | All Switching Nodes in the menu bar.

3. When the Select Switching Node box appears, do the following in it:

a. Choose a node from the list.

Tip: If desired, you reduce the number of nodes that appear in the
by choosing a Filter from the list.

Tip: If desired, you can sort the list of nodes by selecting the Sort
Node Names check box.

b. Choose the OK button.

For more information about switching nodes, see “About Switching
Topology” in Chapter 3 of the Getting Started book.
50

Working With Testplans
Debugging Testplans
To Insert an Instrument into the Watch Window

Note This feature is enabled only when using specific instrument drivers provided
by Hewlett-Packard.

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, click its border to
make it active.

2. Choose Insert | Instrument in the menu bar.

3. When the Select Instrument box appears, do the following in it:

a. Choose an instrument from the list.

b. Choose the OK button.

To Remove an Item from the Watch Window

1. In the Watch window, select the item to be removed.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, clicks its border to
make it active.

2. Choose Edit | Delete in the menu bar.
 51

Working With Testplans
Fine-Tuning Testplans

ed to
t
p a

r
Fine-Tuning Testplans
A testplan is only as good as the tests in it. Good tests are fast, reliable, and
accurate. After you have your tests and testplan running, you may want to
consider taking the steps described in the following topics to fine-tune your
results.

Optimizing the Reliability of Testplans

Several ways to improve the reliability of your testplans are:

• Debug known problems in actions and tests as needed.

For example, you can use the debugging features of the language us
create actions to debug actions. And you can use features in the Tes
Executive that control the running of testplans to pause on a test, ski
test, and such while debugging tests.

• Run testplans for a prolonged period, such as overnight, to verify the

reliability of the tests in them.1

Tip: To run repetitively a testplan, use the “Loop for count” or “Loop fo
time” options under Sequencer Repeat on the Execution tab in the
Testplan Options box (Options | Testplan Options).

• Run testplans with datalogging on and examine the results for
consistency.

1. If you do this, you may want to turn off datalogging to prevent log records
from potentially filling your hard disk.
52

Working With Testplans
Fine-Tuning Testplans

use

t”
se

sert
roup

ar
s, do
g, do

id

he
For example, you might turn on datalogging and run the testplan to
collect data about a single UUT or a group of UUTs. If the data are
inconsistent, try to identify which test(s) is the problem and then fix it.

• Deliberately stress your testplan by introducing conditions that can ca
exceptions, and add fixes as needed.

For example, you might see what happens if an instrument “times ou
without returning a reading. Or, you might deliberately test UUTs who
performance is grossly outside the normal limits.

Optimizing the Throughput of Testplans

Suggested Ways to Make Testplans Run Faster

Some ways in which you can make your testplans execute faster are:

• Use test groups to do slow actions outside of tests or to eliminate
redundant tasks.

If you have a group of tests whose setup/cleanup needs are alike, in
those tasks once, at the beginning of a test group that includes the g
of tests, instead of inside each test. An example of this might be
initializing power supplies or setting up instruments that require simil
setups for more than one test. If several tests require positive source
the tests as a group. Or, if several tests require the same UUT settin
the tests as a group.

• Use triggers for fast synchronization of tests.

For example, avoid synchronizing to slow cycle waveforms. Also, avo
controller-induced test delays.

• Find faster ways to do tests.

For example, use a DMM instead of a slower digitizer.

• Use HP TestExec SL’s profiler feature (described below) to optimize t
actions inside tests in a testplan.
 53

Working With Testplans
Fine-Tuning Testplans

ther
heet
y in
est,

g.
Using the Profiler to Optimize Testplans

HP TestExec SL includes a profiler you can use to see how long each action
or test group in a testplan takes to execute. Once you know how long each
action or test group takes to execute, you can decide where to begin the
“tuning” process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then ei
view Pareto charts directly in HP TestExec SL or use a financial spreads
program to further analyze the data. As shown below, the profiler displa
HP TestExec SL lists actions or test groups in order from slowest to fast
and shows how long each took to complete.

Each time you run the testplan, profiler data from the previous run is
discarded. If a testplan aborts, its profiler data is lost. Also, the profiler is
automatically turned off whenever you exit a testplan.

Note Because the profiler can significantly degrade HP TestExec SL’s
performance, you probably will not want to run it during production testin

To Set Up the Profiler

Before you can use the profiler, you must enable it.

1. Choose Options | Testplan Options in the menu bar.

2. In the Testplan Options box, choose the Profiler tab.

3. Enable the Enable Profiler check box.
54

Working With Testplans
Fine-Tuning Testplans

ts
4. If, besides viewing the profiler data in HP TestExec SL, you want to save
the data in a tab-delimited file for subsequent analysis, such as in a
spreadsheet, do the following:

a. Select the Save to File check box.

b. Either type the name of a file in the data entry field or choose the
Browse button and use the graphical browser to specify a name for the
file in which the profiling data will be saved.

5. Choose the OK button.

Note Because a testplan that contains failing tests is likely to have terminated
prematurely without executing all of its tests, profiling is automatically
disabled when a testplan contains failing tests. If you wish to use profiling
anyway, enable the Ignore all failures option on the Execution tab
of the Testplan Options box (Options | Testplan Options). This causes the
testplan to run to completion despite failures.

To Run the Profiler

• With the profiler enabled, run the testplan as usual.

As the testplan runs with the profiler enabled, HP TestExec SL collec
data about the testplan.

To View Profiler Results in HP TestExec SL

1. After running the testplan with the profiler enabled to collect data,
choose View | Profiler Results in the menu bar.

2. Choose how you would like to see the data displayed.
 55

Working With Testplans
Fine-Tuning Testplans

Formats for displaying profiler data in Pareto charts include:

3. If you wish to limit the amount of data that appears, specify an alternate
value for Maximum Number of Items to Display.

4. Choose the OK button.

Tip: If desired, you can simultaneously view other types of Pareto charts
by choosing Profiler Pareto from the menu bar and choosing another type
when the viewer is active.

Tip: If desired, you can use File | Print Graph to print the results when the
viewer is active.

To View Profiler Results in a Spreadsheet

When you use the profiler’s Write to File option and specify a file name,
data is saved in a tab-delimited format suitable for examination with a
spreadsheet.

Hewlett-Packard also provides a worksheet (“profile.xls”) and an add-in
(“profile.xla”) you can use with Microsoft Excel as the starting point in
examining the data file’s contents. These files are located in directory
“<HP TestExec SL home>\samples\excelmacros”. As shown below, loading

Sum of Action Execution Times Total time that actions in the
testplan took to execute. If an
action is used more than once, this
will be its accumulated time.

Average Action Execution Times Average time that actions in the
testplan took to execute. If an
action is used more than once, this
will be the arithmetic mean of each
execution time.

Sum of Test Execution Times Total time that tests in the testplan
took to execute.

Average of Test Execution Times Average time that tests in the
testplan took to execute.
56

Working With Testplans
Fine-Tuning Testplans

cel’s
either of these files adds a Profiler option and related menu items to Ex
menu bar.
 57

Working With Testplans
Moving a Testplan

.”

ed to

ies.

 in
y a

d

Moving a Testplan
You may want to develop testplans on a central development system that is
fully configured even if you intend to use them elsewhere. That way, not
every test system needs a full set of hardware resources for compatibility;
i.e., each destination system needs only the subset of the development
system’s resources that are required to run a specific testplan.

Once you have developed and debugged a new testplan on the development
system, you probably will want to release it to your production environment.
For example, if you intend to run the testplan on more than one test system,
you must copy the appropriate files to other systems. Also, you probably
will want to make a backup copy of the completed testplan “just in case

Do the following to move a testplan from your development system to

another system:1

• Be sure the destination system has all the hardware resources need
run the testplan.

• Copy the testplan file—i.e., “testplan_name.tpa”—to the destination
system.

• Be sure all the files used by actions in your testplan exist on the
destination system. These include “*.umd” files and executable librar

Tip: You can use View | Listing | Actions to list the contents of actions
a testplan. Or, you can use an audit listing to show all the files used b
testplan.

• Copy the topology files for the fixture and UUT layers (“fixture.ust” an
“uut.ust” files or equivalent) to the destination system.

• If external symbol tables are associated with the testplan, copy them
(“*.sym” files) to the destination system.

1. The directory structure on the destination system can be different from the
directory structure on the development system.
58

Working With Testplans
Moving a Testplan

h

n

, if
g.

&

p
• Verify that the datalogging options are the same across the systems:

• Be sure the [Data Log] section in the “tstexcsl.ini” file on the
destination system identifies the format and definition files you wis
to use when datalogging.

• Be sure the datalogging options for the testplan (Options | Testpla
Options | Reporting) reflect the settings you wish to use on the
destination system.

• Be sure the destination system's topology file for the system layer
(“system.ust”) is the same as or a superset of the file on the
development system.

• Be sure to remove any flags, such as skipped tests or breakpoints
you are moving the testplan to a system used for production testin

For more information about flags, see “Using Interactive Controls
Flags.“

Caution Flags left in the testplan can cause the operator interface to behave
incorrectly. For example, a breakpoint flag can cause the testplan to sto
executing prematurely and leave the operator interface “hung.”

For suggestions about setting up library search paths to optimize the
portability of testplans, see “Using Search Paths to Improve Testplan
Portability” in Chapter 5.
 59

2

Working With Tests & Test Groups

This chapter describes how to use tests, which are a sequence of actions
executed as a group to do some form of testing, and test groups, which are
primarily a way of structuring tests.

For an overview of tests and test groups, see Chapter 3 in the Getting Started
book.
61

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

 a

r 3

n

or
e.

Specifying Parameters for a Test/Test Group

To Add a Parameter to a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose the Insert button.

3. Specify the parameter’s characteristics.

You can click a row under Value and choose the button to invoke
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapte
of the Getting Started book for general information about specifying
parameters.

4. Choose the OK button.

Tip: If you enter more than one parameter, you can use the Up and Dow
buttons to rearrange the order in which parameters appear in the list.

Modifying a Parameter for a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Edit
window, choose the Test/Test Group Parameters tab in the right pan

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Edit button.

4. Modify the parameter’s characteristics.
62

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

r 3

ich

or
e.

You can click a row under Value and choose the button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapte
of the Getting Started book for general information about specifying
parameters.

5. Choose the OK button.

Tip: You can use the Up and Down buttons to rearrange the order in wh
parameters appear in the list.

To Remove a Parameter from a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Edit
window, choose the Test/Test Group Parameters tab in the right pan

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Delete button.

4. Choose the OK button.
 63

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

 for

tplan

e
Specifying Actions for a Test/Test Group
Because actions let tests do useful tasks, tests typically have actions
associated with them. Test groups, however, can be useful even without
having actions associated with them. For example, you might use test groups
simply as aids in structuring your testplans.

To Add an Action to a Test/Test Group

Note Be sure the search paths for action libraries are set up correctly or you may
not be able to find the action you want; see “Specifying the Search Path
Libraries” in Chapter 5.

1. With the desired test or test group selected in the left pane of the Tes
Editor window, choose the Actions tab in the right pane.

2. Click in the list under Actions for Test ‘<test name>’ to specify where to
insert an action into the test.

The action will be inserted immediately before the line selected as th
insertion point.
64

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group
3. Do either of the following:

If the action is a... Do this...

switching action a. Choose the Insert Switching button.

b. Under Parameters for “Switching”, specify the
switching path(s) and what action should be
taken for them at setup and cleanup.

See “Controlling Switching During a Test” for
detailed information about creating switching
actions.

regular action a. Choose the Insert button.

b. When the Insert Action box appears, use it to
find the desired action and insert it into the test.

For more information about using the Insert
Action box’s search features, see “Searching for
Items in a Library” in Chapter 5.

c. Specify the action's parameters and limits (if it
returns a result) as needed.

See “Specifying the Properties for Parameters
& Symbols“ in Chapter 3 of the Getting Started
book for general information about specifying
parameters. Specific procedures for specifying
parameters and limits are described in the next
couple of topics.

Tip: As a shortcut when inserting regular actions,
you can select the area in which the list of actions
appear and begin typing. As shown below, the first
action whose name matches the characters you
type will be selected in the list that appears. Select
an action in the list and press Enter to insert it into
your test.
 65

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

or

r

 a

e
e
Tip: As a shortcut when inserting regular actions, you can select a point in
the list of actions and begin typing. As shown below, the first action whose
name matches the characters you type will be selected in the list that
appears. Select an action in the list and press Enter to insert it into your test.

The list of actions that appears in this box is the same as the list that appears
in the Insert Action box. Like the list of actions in the Insert Action box, the
contents of this list depend upon the setting for search paths.

Tip: Choose the Move Up and Move Down buttons to rearrange the order in
which actions appear in the list.

Tip: Choose the Details button to examine the action’s definition.

To Specify Parameters for Actions in a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Edit
window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for Test ‘<test name>’.

3. Edit the characteristics of a parameter in the list under Parameters fo
‘<action name>’.

You can click a row under Value and choose the button to invoke
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

Tip: If the name of a parameter is italicized, its associated value is th
default specified when the action was created. If it is not italicized, th
default value has been overridden by a new value.
66

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

 a

s in

up.

w.

er

 a

on in
used

h

w.

ing
Tip: If the name of a parameter appears as bold text, that parameter
returns a result.

Tip: Right-clicking on a parameter invokes a menu from which you can
edit the parameter’s value, associate the parameter with a symbol in
symbol table, or reset the parameter’s value to its default.

Tip: An @ sign precedes the names of parameters that reference item
symbol tables.

To View Parameters for Actions in a Test/Test Group

1. In the left pane of the Testplan Editor window, select a test or test gro

2. Choose the Actions tab in the right pane of the Testplan Editor windo

3. Click an action in the list under Actions for Test ‘<test name>’.

4. Examine the parameter names and values that appear in the list und
Parameters for ‘<action name>’.

You can click a row under Value and choose the button to invoke
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and examine items directly.

To Specify the Limits for a Test

Note Although you can use an execute action in a test group, an execute acti
a test group cannot return a result for limits checking. Only tests can be
for limits checking.

1. In the left pane of the Testplan Editor window, select the test for whic
you wish to set limits.

2. Choose the Actions tab in the right pane of the Testplan Editor windo

3. Verify that the execute action chosen to return results for limits check
in the list under Actions for Test ‘<test name>’ is the one you want. If it
 67

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

k

n

s

ns
t of

 a

le,

ose
e
’s

or

ey

ired

is not, select the correct one, right-click on it, and choose “Limit chec
this measurement” from the menu that appears.

Note: An asterisk (*) appears in front of the name of the execute actio
chosen for limits checking.

4. With the desired action selected on the Actions tab, choose the Limit
tab.

5. If you wish to specify a different limits checker for the action that retur
results for the test, choose another from the drop-down list to the righ
“Limit Checker”.

6. Specify the value(s) for the limits.

You can click a row under Value and choose the button to invoke
separate editor for the limit or edit each limit directly.

Tip: Right-clicking a limit’s name invokes a menu from which you can
edit the limit’s value, associate the limit with a symbol in a symbol tab
or reset the limit’s value to its default.

Tip: As a shortcut when specifying parameters and limits, you can cho
the Limits button on the Actions tab and quickly switch to a view of th
action’s limits without leaving that tab. To return to viewing the action
parameters, click the action in the list of actions.

To Remove an Action from a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Edit
window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for Test ‘<test name>’.

Tip: You can select an inclusive range of actions by holding the Ctrl k
and clicking at the start of the desired range, holding the Shift key
without releasing the Ctrl key, and then clicking at the end of the des
range. Alternatively, you can select multiple items by holding the Ctrl
key and clicking individual actions.

3. Choose the Delete button.
68

Working With Tests & Test Groups
To Save a Test Definition in a Library

 the
To Save a Test Definition in a Library
Saving test definitions in a library lets you reuse them as needed, which
reduces the amount of work required to create new testplans.

1. With a test selected in the left pane of the Testplan Editor window,
choose File | Save Test Definition in the menu bar.

2. In the Test Name field of the Save a Test Definition box, specify a name
for the test.

3. If the test has multiple variants, use the list to choose the variant for the
version you wish to save.

4. (optional) In the Author’s Name field, enter the name of whoever created
the test.

5. (optional) Enter the test’s version number, if it has one.

6. (optional) Enter a description of the test.

7. (optional) Select one or more keywords, one at a time, in the list under
Available and choose the Add button to copy them to the list under
Selected Keywords.

Tip: If desired, you can click the blank area in the list under Selected
Keywords and create new keywords by typing them there.

See “How Keywords Simplify Finding Items in Libraries” in Chapter 5
for more information about keywords.

8. Choose the OK button.

9. When the Save As box appears, specify a file name in which to save
test.

10.Choose the Save button.
 69

Working With Tests & Test Groups
To Save a Test Definition in a Library
Note Although entering optional information is more work initially, it can save
time when you reuse code. For example, knowing the author’s name tells
you who to contact if you have a question about the test. Or, being able to
search by keyword makes it easier to find specific tests later.
70

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups

ties

e

 left

the
To Pass Results Between Tests/Test Groups
If desired, you can pass the results from one test or test group to another test
or test group. A result is passed as a parameter to an action.

1. With a testplan loaded, in the left pane of the Testplan Editor window
select the test or test group from which you wish to pass results.

2. Choose View | Symbol Tables in the menu bar.

3. When the Symbol Tables box appears, use it to declare a new variable in
either the SequenceLocals symbol table or in an external symbol table.

Note: If you use the SequenceLocals symbol table, be sure the sequence
shown in the left pane of the Testplan Editor window is the desired one.
You cannot use SequenceLocals to pass results between sequences.

For information about declaring variables, see “Specifying the Proper
for Parameters & Symbols” in Chapter 3 of the Getting Started book. For
information about the mechanics of using symbol tables, see “Using
Symbol Tables” in Chapter 5.

4. In the right pane of the Testplan Editor window, select an action (in th
list under Actions for Test ‘<test name>’ on the Actions tab) that has a
parameter you wish to pass from the test or test group selected in the
pane.

5. Click the Name of the parameter in the list under Parameters for
‘<action name>’.

6. Click the button to invoke the editor for the parameter.

7. When the editor appears, enable references a symbol if it is not already
enabled.

8. Use the Available Tables list to select the symbol table that contains
shared variable you created earlier.
 71

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups

the

ble
9. Use the Available Symbols list to select the name of the shared variable
you created earlier.

10.Choose the OK button.

11.In the left pane of the Testplan Editor window, select the test or test group
that is to receive the results.

12.In the right pane of the Testplan Editor window, select an action (in the
list under Actions for Test ‘<test name>’) with a parameter that is to
receive the passed value.

13.Click the Name of the parameter in the list under Parameters for
‘<action name>’.

14.Click the button to invoke the editor for the parameter.

15.When the editor appears, enable references a symbol if it is not already
enabled.

16.Use the Available Tables list to select the symbol table that contains
shared variable.

17.Use the Available Symbols list to select the name of the shared varia
being passed.

18.Choose the OK button.
72

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group

ties

o

oup
To Share a Variable Among Actions in a Test/Test
Group
Declaring a variable whose scope is a test or test group lets actions inside the
test or test group share that variable.

1. With a testplan loaded, in the left pane of the Testplan Editor window
select the test or test group whose actions are to share a local variable.

2. Choose the Edit Symbols button on the Actions tab in the right pane of
the Testplan Editor window.

3. When the Symbols for Test/Test Group ‘<test/test group name>’ box
appears, choose its Insert button.

4. Specify the characteristics of the new, shared variable.

For information about declaring variables, see “Specifying the Proper
for Parameters & Symbols” in Chapter 3 of the Getting Started book.

5. Choose the OK button in the Symbols for Test/Test Group ‘<test/test
group name>’ box.

6. Do the following for each action that contains a parameter you wish t
have share the newly defined variable:

a. Select the desired action in the list under Actions for Test/Test Gr
‘< test/test group name>’ on the Actions tab.

b. Click the Name of the parameter in the list under Parameters for
‘<action name>’.

c. Click the button to invoke the editor for the parameter.

d. When the editor appears, enable references a symbol if it is not
already enabled.

e. Select TestStepLocals from the Available Tables list.
 73

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group
f. Use the Available Symbols list to select the name of the variable you
created earlier.

g. Choose the OK button.
74

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

s the
ore

 to
.

 to
hat
Controlling Switching During a Test/Test Group
Switching is dependent upon switching topology, which defines a test
system’s switchable connections. Switching topology is explained in
Chapter 4.

Note The Throughput Multiplier feature, which lets you use a single set of
hardware resources and a single testplan to test multiple UUTs, enhance
functionality of switching actions beyond what is described below. For m
information about the effects of the Throughput Multiplier on switching
actions, see Chapter 10.

Overview of Creating a Switching Action

If you are using hardware handler software to model your test system's
switching hardware and you have used the Switching Topology Editor to
describe your topology to the Test Executive, you can:

1. Use the upper section of the right pane of the Testplan Editor window
insert a switching action into your test or test group, as shown below

2. Use the lower section of the right pane of the Testplan Editor window
specify the connections needed for the test or test group as well as w
 75

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

 the

ight

e
action the switching paths should take at the beginning and end of the test
or test group: open, close, or restore the previous state.

To Create a Switching Action

1. In the left pane of the Testplan Editor window, select the test or test group
to which you wish to add a switching action.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Click the desired insertion point in the list under Actions for Test/Test
Group ‘<test/test group name>’.

Tip: Use the Up and Down buttons to rearrange items in the list of
actions.

4. Choose the Insert Switching button on the Actions tab.

5. Repeat the following steps for each switching path you wish to add to
switching action:

a. Click the field labeled “Select and press '...' to add nodes” to the r
of Add Path under “Parameters for ‘Switching’”.

b. Click the button to invoke the Path Editor.

c. Use the Path Editor to specify the switching path.

For more information about specifying switching paths, choose th
Help button in the Path Editor
76

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

lect

6. Choose the OK button in the Path Editor.

7. Choose an option for At Setup to specify what happens to this group of
switching paths when the test or test group begins:

8. Choose an option for At Cleanup to specify what happens to this group of
switching paths when the test or test group ends:

To Delete a Switching Action

1. In the left pane of the Testplan Editor window, select the test or test group
that contains a switching action you wish to delete.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Click the switching action to be removed from the list under Actions for
Test/Test Group ‘<test/test group name>’.

4. Choose the Delete button on the Actions tab.

To Modify a Switching Path in a Switching Action

1. On the Actions tab in the right pane of the Testplan Editor window, se
a switching action by clicking it in the list under Actions for Test/Test
Group ‘<test/test group name>’.

Connect Paths Switching paths will be closed

Disconnect Paths Switching paths will be opened

Connect Paths Switching paths be closed

Disconnect Paths Switching paths will be opened

Undo Setup Paths Switching paths will be restored to the state they
were in prior to the test or test group; i.e.,
whatever was done for At Setup will be undone
 77

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group
2. Modify the switching path as needed. For any existing path, you can:

a. Click in the field under Value to the right of the name of the path

b. Click the button to invoke the Path Editor.

c. Use the Path Editor to modify the path.

For more information about specifying switching paths, choose the
Help button in the Path Editor

To Delete a Switching Path in a Switching Action

You delete an existing switching path by setting its value to nothing.

1. On the Actions tab in the right pane of the Testplan Editor window, select
a switching action by clicking it in the list under Actions for Test/Test
Group ‘<test/test group name>’.

2. Click in the Name field under Parameters for Action ‘<action name>’ for
the switching path to be deleted.

3. Press the Del key on your keyboard.
78

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants
Specifying Variations on Tests/Test Groups When
Using Variants

Overview

Each variant of a testplan lets you create a potentially unique variation on
the parameters and limits associated with the tests and test groups in that
variant. Because they let you use one testplan with n different sets of test
limits and parameters, variants are useful where one UUT is very similar to
another except for slightly different values for its test limits or parameters.

The general procedure for specifying the characteristics of tests or test
groups when using variants is:

1. Choose a testplan variant

2. Choose a test or test group

3. Specify the characteristics of the test or test group for that testplan variant

Later, when running the testplan, you can specify which variant to use.

To Specify a Test/Test Group’s Characteristics for Each
Variant

Repeat the following steps for however many variants your testplan has:

1. Choose Options | Testplan Options in the menu bar.

2. On the Execution tab in the Testplan Options box, choose a variant from
the list under Testplan Variant and choose the OK button.

3. Select a test or test group in the left pane of the Testplan Editor window.

4. Use the features on the tabs in the right pane of the Testplan Editor
window to specify the characteristics for this variation of the test or test
group.
 79

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants

r 3
Tip: If you would simply like to examine the characteristics of tests or test
groups for each testplan variant, follow the steps above but do not change
anything.

For a conceptual overview of variants, see “Testplan Variants” in Chapte
of the Getting Started book. For information about creating or modifying
variants of testplans, see “Using Variants in Testplans” in Chapter 1.
80

Working With Tests & Test Groups
Viewing the Test Execution Details
Viewing the Test Execution Details

Overview

The Test Execution Details window lets you view the details of what will
happen when a test or test group is executed. The routines inside actions are
listed in the order in which they are executed.

Refer to the example of a testplan shown below.

Suppose the following list of actions appeared in the test group named
“Time Domain.”
 81

Working With Tests & Test Groups
Viewing the Test Execution Details

cute
 test
ution
ld
An annotated example of how the Test Execution Details window would
look when examining this test group looks like this:

The window contains two columns. The left column lists the names of
actions in the test or test group, and the right column lists the names of
routines in those actions. The information is further organized into rows that
list the actions and their components in the order in which they are executed.

The Test Execution Details window shows that the test group in the example
contains four actions: Open Instrument, Initialize Module,
Digitize Signal, and one switching action. The action named Open
Instrument is a setup/cleanup action because it is listed under both
SETUP OR EXECUTE and CLEANUP. Both Initialize Module and
Digitize Signal are execute actions because they appear only under
SETUP OR EXECUTE, and not under CLEANUP.

Notice how it is implied that the test group’s setup components and exe
actions are executed before the tests inside the test group, and that the
group’s cleanup components are executed afterward. Although the exec
details of tests inside the test group do not appear in this listing, you cou
select those tests individually and view their test execution details.

setup component in setup/cleanup

cleanup component in setup/cleanup

execute action
execute action
setup component in switching

cleanup component in switching

>> tests inside the test group execute here <<
82

Working With Tests & Test Groups
Viewing the Test Execution Details
To View the Test Execution Details

1. With a testplan loaded, click a test or test group in the left pane of the
Testplan Editor window.

2. Choose View | Test Execution Details in the menu bar.

3. When you have finished examining the details of the test or test group,
choose the OK button.
 83

3

Working With Actions

This chapter describes how to use actions, which are components used to create
tests.

For an overview of actions, see Chapter 3 in the Getting Started book.
85

Working With Actions
Things to Know Before Creating Actions

s
Things to Know Before Creating Actions

Note The topics in this section apply to all types of actions. Subsequent sections
describe how to create actions in specific programming languages.

Note HP TestExec SL includes some predefined actions for your use. Look in
directory “<HP TestExec SL home>\Actions” for subdirectories whose
names indicate the kinds of actions they contain, such as math or string
manipulation functions. To learn more about these actions, look under
Predefined Actions” in the table of contents for HP TestExec SL’s online
help.

How Do I Create Actions?

An action consists of two discrete components: a definition that describe

the action’s characteristics to the Test Executive environment1, and action
routines (code) that each do one or more tasks.

Given the model above, creating an action is a two-part process:

1. Creating the action definition.

1. It may help if you think of defining an action as using the Action Definition
Editor to “register” the action with the Test Executive.

Action

Definition

Routines
86

Working With Actions
Things to Know Before Creating Actions

ics

es

ple,
n
You use the Action Definition Editor to define the action’s characterist
and identify (but not write) the underlying code associated with the
action. Each action definition contains the following information:

• The action “style,” which adjusts the Action Definition Editor’s
behavior to match your choice of programming language.

• The name of the action.

• The name of the DLL or other library file in which the action’s
executable code resides.

• The name of the action’s author.

• A description of the action.

• Keywords that help when searching for the action if someone wish
to reuse it later.

• The type of action routine—execute or setup/cleanup. (Typically,
most of the actions you use will be execute actions.)

• Definitions of parameters used in the action, including their data
types, default values, and descriptions.

2. Creating the action routines.

You use the editor, debugging tools, and environment of your chosen
programming language to write the code for action routines.

In most cases, you can do these two main steps in any order. For exam
you may prefer to write the action routine first and then create a definitio
for it later.

Which Languages Can I Use to Create Actions?

You can write action code in:

• Visual C++ Version 2.0 or higher, 32-bit versions only. (Highly
recommended)
 87

Working With Actions
Things to Know Before Creating Actions

.

s
e,

tten in
 it.

,
n

ions
• Borland C++, Version 4.0 or higher, 32-bit versions only.

• HP VEE, Version 3.2 or higher for Windows 95.

• National Instruments LabVIEW, Version 4.0 or higher for Windows 95

• HP BASIC for Windows 6.3.x.

Note You can freely mix actions in various languages so long as they do not
access the same instruments within the same testplan. This restriction i
necessary because each language is unaware of the other. For exampl
suppose an action written in C sets an instrument to a particular state.
Because it operates in a separate environment, a subsequent action wri
HP VEE would be unaware of that state and might inadvertently change
And, of course, if another C action followed the HP VEE action, it would
not be aware of any changes made in HP VEE.

Improving the Reusability of Actions

Designing for Reusability

HP TestExec SL has features that help you reuse action definitions and
action routines. To maximize the potential for reusing actions, keep the
following in mind when creating them:

• Use a directory structure to organize similar actions into libraries.

For more information about libraries, see “Using Test & Action
Libraries” in Chapter 5.

• Use the Action Definition Editor’s documentation features—keywords
action naming, action descriptions, and parameter descriptions—as a
aid to making actions easy to find and use in each library.

• Reuse or modify an existing action whenever possible. Write new act
only when no other existing action will work.
88

Working With Actions
Things to Know Before Creating Actions

or
ng up
es
he

's

lps
 to
he
uch
of
ion
a

e

n’s
 in
Note You can add new parameters to an existing action and have existing tests that
use that action continue to work. Simply specify a default value for each new
parameter. Because existing tests will not override the default values of new
parameters, the modified action will mimic its previous behavior.

• Short actions that do a single task have greater reusability than more
complex actions. When possible, break larger test operations into a
shorter series of simple actions.

• Design commonly used actions for use by multiple test sequences. F
example, if you have more than one test sequence that requires setti
a digital-analog converter, you could create a separate action that do
the converter setup. You could then use that setup action in each of t
test sequences that use the converter.

• Use hardware handler software whenever possible (described in
Chapter 4).

Documenting Your Actions

Choosing Names for Actions

Each action consists of a definition file and a file that contains the action

executable code.1 Having a sensible and consistent naming convention he
you organize and describe actions, which makes them self-documenting
some extent. For example, you might use the convention of combining t
action name with the step where the routine will be used in the action, s
as “MyAction_Execute” or “MyActionSetup”. Or you could use the name
the action to describe what the action does, such as “TrigVolt” for an act
that triggers a voltage source or “MeasVolt” for an action that measures
voltage.

For consistency, we recommend that you give the definition file the sam
name as the action, followed by the extension “.umd”—for example,
“DMMSetup.umd”. Then name the code file in accordance with the actio
function, followed by whichever extension is appropriate for the language

1. The code can reside in a library that also contains code for other actions.
 89

Working With Actions
Things to Know Before Creating Actions

dd
al

ch
ll
ues.

h

, the
which the action is written.1 An example of this might be “DMMSetup.dll”
for an action written in C.

Entering Descriptions for Actions

The Action Definition Editor lets you enter a textual description of each
action. The description should contain such information as:

• A description of what the action does.

• The action's context, such as whether it is doing a setup, execute, or
cleanup function.

• A list of any limitations.

• A list of any special instructions, such as required switching or
accompanying actions.

For example, if you had an action that named “adcConfArm”, you could a
the description, “Configures the arming subsystem of the analog to digit
converter.”

Entering Descriptions for Parameters

You can use the Action Definition Editor to add a textual description to ea
parameter in the definition of an action. In the description, you should te
what the parameter does, its units of measure, and its range of valid val

Choosing Keywords for Actions

As you create actions, you will probably store them in libraries from whic
they will be used to create tests in the Test Executive environment. By
letting you associate one or more searchable keywords with each action
Action Definition Editor helps you quickly locate actions in libraries.

1. If you create actions in HP BASIC for Windows, all the actions for a given
testplan must reside in a single file (server program). You may wish to give
that file the same name as the testplan with which it is used.
90

Working With Actions
Things to Know Before Creating Actions

es in

rch

s.

gful
The keyword feature works best when you follow these rules:

• Always assign keywords to actions. This speeds up the search featur
the Test Executive environment.

• Use keywords from the predefined master list of keywords whenever
possible. Adding too many keywords increases the length of the sea
list, which makes it harder to find a specific action. In general, you
should have fewer keywords than actions.

• Add a keyword to the master list only if you can use it for other action

• If you must create a new keyword, make sure the keyword is meanin
and that it describes the action.
 91

Working With Actions
To Define an Action

e

To Define an Action
Use the Action Definition Editor to create an action definition. The general
procedure for defining an action in all supported programming languages is
described below. Subsequent topics describe the nuances of defining actions
in specific languages.

1. Choose File | New in the menu bar.

2. Choose “Action Definition” from the list.

3. Choose the OK button.

4. Choose an action style from the list, which contains:

5. Choose the OK button.

6. In the Name field, type the name of the action.

Tip: Choose a meaningful name that will help when you search for th
action later.

7. (optional) In the Author field, type your name to identify you as the
action's author.

8. In the Library Name field, type the name of the executable library file
(such as a DLL) that contains the action routines associated with this
action.

DLL Style Action is written in in C/C++

HP VEE Action is written in HP VEE

LabVIEW Action is written in National Instruments LabVIEW

HP RMB Action is written in HP BASIC for Windows
92

Working With Actions
To Define an Action
Note Leave the Library Name field blank if you are defining an action created in
HP BASIC for Windows.

9. (optional) In the Description field, type a description of the action.

Tip: A useful description tells what the action does, gives the context in
which the action is used (such as whether it is doing a setup, execute, or
cleanup function), lists any limitations, and includes any special
instructions, such as required switching or accompanying actions.

10.(optional) Do either of the following to make it easier to locate the action
in an action library:

a. Select a master keyword from the predefined list.

b. Choose the Add button adjacent to the list of keywords to add the
keyword to the action.

- or -

a. If none of the existing master keywords fits the action, type a new
keyword in the keyword field.

b. Choose the Add button adjacent to the list.

c. If this keyword will be useful with other actions, choose Edit | Add
Master Keyword in the menu bar.

11.Choose the Setup/Cleanup or Execute button to specify which kind of
action you are defining.

12.Type the names of one or more routines, functions, or subprograms
associated with this action (Setup, Execute, & Cleanup fields).

Tip: Useful, descriptive function names often combine the action name
with the step where the function will be used in the action, such as
“MyAction_Execute”.
 93

Working With Actions
To Define an Action

e

ny

box
 can
g
13.Add parameters as needed by choosing the Add button at the bottom of
the Action Definition Editor and specifying their properties.

For more information about specifying parameters, see “Using
Parameters with Actions.”

14.(optional) Specify auditing information by choosing File | Revision
Information in the menu bar and entering descriptive information in th
Action Revision Information box.

15.When you have finished defining the action, choose File | Save in the
menu bar, specify a name for the new action definition, and save it.

Note Not all parameter types can be used with all programming languages. A
restrictions are noted in the topics that describe how to create actions in
specific languages.

Note If you choose “HP VEE” as the action style, an additional Debug check
appears. Checking this box lets you start HP VEE in debug mode so you
debug actions created using HP VEE. After you have finished debuggin
your actions, unselect this box to return to HP VEE's run-time mode.
94

Working With Actions
Using Parameters with Actions

ers.
ction

s up a
nt
Using Parameters with Actions
The topics in this section describe the data types supported when passing
data in parameters to actions and the mechanics of using the Action
Definition Editor when working with parameters.

Types of Parameters Used With Actions

Each time an action is executed, the Test Executive can pass it one or more
parameters or a pointer to a group—called a “block”—of named paramet
Passing specific parameters or a parameter block to the routines in an a
creates a unique instance of the action. For example, an action that set
power supply might be passed parameters that define voltage and curre
settings.
 95

Working With Actions
Using Parameters with Actions
Overall, the Action Definition Editor supports these types of parameters for
actions:

For more information about data types and how they are used, see Chapter 1
in the Reference book.

Type Description

Complex Real — The real or magnitude component of a complex
number.
Imaginary—The imaginary or vector component of a
complex number.

Inst The identifier for an instrument.

Int32 A 32-bit integer.

Int32Array An array of 32-bit integers.

Node (reserved for future use)

Path A Switch Configuration Editor path name representing a
single switching path.

Point A pair of 64-bit real numbers, consisting of an X value and
a Y value.

PointArray An array of point data types, where each element consists
of an X value and a Y value.

Range A means of storing data that has a beginning, an end, and
an incremental step size, such as frequency sweep data.

RangeArray An array of ranges.

Real64 A 64-bit real number.

Real64Array An array of 64-bit real numbers.

Real64Expr The value of a 64-bit real expression.

String A group of characters that make up a string.

StringArray An array of strings.
96

Working With Actions
Using Parameters with Actions

,

Note Which specific parameter types you can use in an action definition depends
upon which action style you choose. Action styles are described in greater
detail later.

Properties you can define that are associated with parameters include:

To Add a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, choose
the Add button at the bottom of the Action Definition Editor.

2. Specify the parameter’s characteristics.

Value Sets literal values for parameters.

Reference Selects a value by referencing the name of a symbol in a
predefined symbol table. For example, you could select an
instrument name from a hardware configuration table.

Note: Your ability to edit some parameters depends on the
“SymVal” security setting for your user login name or
group. See “Controlling System Security” in Chapter 6.

Output Designates parameters that will return results. You can
designate only one output per action definition. (Use array
parameters to pass multiple results.)

Note: You should only designate parameters of type Int32
Int32Array, Real64, Real64Array, String, or StringArray as
Output because automatic limits checking is restricted to
these types.

Restrict
Value

For some data items, specifies the low and high limits for
permissible values for a data item or for all elements in an
array.

Arrays Specifies arrays of up to three dimensions for Int32, Point,
Range, Real64, and String data types. You can specify
values, designate values by reference, set point values, or
set range values for each element in an array.
 97

Working With Actions
Using Parameters with Actions

r 3

e.,

rent

nd

 a

r 3
You can click a row under Value and choose the button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapte
of the Getting Started book for general information about specifying
parameters.

Note If desired, more than one parameter in your action can return a result; i.
more than one parameter can have its Action Output box checked in the
editor used to specify that parameter’s characteristics. If more than one
parameter returns a result, use the drop-down list to the right of “The cur
result is:” to specify which parameter’s result should be used for limits
checking.

Tip: When working with a list of parameters, you can use the Move Up a
Move Down buttons to reorder the list.

To Modify a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, click a
parameter in the list under Action Parameters.

2. Modify the parameter’s characteristics as needed.

You can click a row under Value and choose the button to invoke
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapte
of the Getting Started book for general information about specifying
parameters.
98

Working With Actions
Using Parameters with Actions
To Delete a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, click a
parameter in the list under Action Parameters.

2. Choose the Delete button at the bottom of the Action Definition Editor.

Caution If you delete a parameter and exit the Action Definition Editor without
resaving the action definition, your change will be discarded.
 99

Working With Actions
Using Keywords with Actions

ew

,

es

te
Using Keywords with Actions
The next several topics describe the mechanics of working with keywords,
which you associate with actions to make specific actions easier to find
when searching libraries of actions.

To Add a Keyword to an Action

1. Do either of the following in the Action Definition window:

• Select a keyword from the list of master keywords.

- or -

• If none of the predefined master keywords fits the action, type a n
keyword in the keyword box. The new keyword should clearly
identify the action's purpose. Typical keywords might be measure
setup, instrument, or stimulus.

Note You can assign multiple keywords for an action.

Note Use existing master keywords whenever possible. Adding too many new
keywords can make it harder to find actions if the list of keywords becom
too long to browse conveniently.

2. Choose the Add button adjacent to the list of keywords.

To Delete a Keyword from an Action

1. In the Action Definition window, click on the keyword you want to dele
from the list of keywords for the current action.

2. Choose the Delete button adjacent to the list of keywords.
100

Working With Actions
Using Keywords with Actions

ost
act

To Add a Master Keyword to the List

1. Do either of the following in the Action Definition window:

• Select a keyword from the list of keywords for the current action.

- or -

• Type a new keyword in the keyword box.

2. Choose Edit | Add Master Keyword in the menu bar.

Note Minimize the number of master keywords that you add. Keywords are m
useful when developers in an organization agree upon a standard, comp
set of keywords whose meaning is specific.

To Delete a Master Keyword from the List

1. In the Action Definition window, select a keyword in the list of master
keywords.

2. Choose Edit | Delete Master Keyword in the menu bar.
 101

Working With Actions
Creating Actions in C

e

and
ed,

L
e

a
nes

Creating Actions in C

Note Although most of this section describes using Visual C++ to create action
code, you do not need to know C++ to create actions. Some topics describe
C++ functionality for those who are familiar with C++, but in most cases
you can simply follow the examples and make your code work. Typically, all
you are doing is using a C++ compiler to produce C-like code; i.e., you are
not using the C++ extensions to the C language. Thus, when you see
reference to a “C action” it may help if you think of it as “C-like action cod
written using a C++ development environment.”

The action routines in a C action reside in a DLL whose code you write
compile. Each DLL can contain one or more action routines and, if desir

you can add new actions to an existing DLL.1 You must decide how many or
how few action routines to include in a single DLL.

What are the trade-offs? Using many small DLLs—for example, one DL
per action routine—causes testplans to load more slowly than having on
large DLL that contains many action routines. However, using one large
DLL reduces the modularity of your test system. We recommend using
single DLL to hold a logically related set of action routines, such as routi
that make DC measurements.

Overview of the Process

The general process to follow when creating an action in C is:

1. Use HP TestExec SL’s Action Definition Editor to define the action by
specifying the name of the routine (or names if using a setup/cleanup
routine), parameters, descriptions, and keywords.

For more information, see “To Define an Action.”

1. The system DLLs supplied with HP TestExec SL are read-only, and you
should not add new action routines to them.
102

Working With Actions
Creating Actions in C

es

.,

a
eter

or
rn”

ing
 a

eter
2. Use your C/C++ environment to create a header file (“.h”) that declar
the functions in your actions and an implementation file (“.cpp”) to
contain the action source code.

Note Be sure to enclose your action code in an extern "C" declaration, as
shown in the examples, to prevent C++’s type-safe linkage scheme—i.e
“name mangling”—from causing problems when linking.

3. Write the code for the action routine.

4. Compile the source code to build a DLL.

5. Test/debug the DLL as needed.

Note Your C/C++ environment does not need to be running while you use
HP TestExec SL unless you are debugging an action and want to set
breakpoints in the C/C++ environment.

Writing C Actions

C actions use the DLL action style, which passes named parameters in
block or collection that is a C structure. Instead of specifying each param
in a formal list, you pass a handle to the entire parameter block. Unlike a
formal list of parameters, individual parameters in a parameter block are
referenced by name and not by position.

Note Besides containing parameters used to pass values to action routines,
parameter blocks also can contain parameters that return results used f
limits checking. Thus, your C action code should not use an explicit “retu
statement to return a value.

Using Parameter Blocks With a C Compiler

If you do not have a C++ compiler, you can use DLL style actions by us
an API to access parameter values from a C compiler. The API provides
function for getting the value of each parameter type. The form for the
function name is “UtaPbGet” or “UtaPbSet” plus the name of the param
 103

Working With Actions
Creating Actions in C
type. For example, the following lines of code declare a variable whose type
is double and return a value to it from a parameter named MyParm in a
parameter block.

double dMyVariable;
UtaPbGetReal64(hParmBlock, "MyParm", &dMyVariable);

Listed below are the various API functions and the types of parameters with
which they are used.

This function name . . . Gets/Sets a value for this parameter type

UtaPbGetComplex
UtaPbSetComplex

Complex

UtaPbGetInst
UtaPbSetInst

Inst

UtaPbGetInt32
UtaPbSetInt32

Int32

UtaPbGetInt32Array
UtaPbSetInt32Array

Int32Array

UtaPbGetNode
UtaPbSetNode

Node

UtaPbGetPath
UtaPbSetPath

Path

UtaPbGetPoint
UtaPbSetPoint

Point

UtaPbGetPointArray
UtaPbSetPointArray

PointArray

UtaPbGetRange
UtaPbSetRange

Range

UtaPbGetRangeArray
UtaPbSetRangeArray

RangeArray

UtaPbGetReal64
UtaPbSetReal64

Real64
104

Working With Actions
Creating Actions in C
The following example shows how to use the API functions to access
parameter blocks.

Note To understand the differences between using C and C++ compilers, you may
find it useful to contrast this example with the similar example described
later under “Using Parameter Blocks With a C++ Compiler.”

// C action routine to program a DVM & return a reading.
// Parameter block was defined with these parameters:
// Result - UtaReal64
// Function - UtaInt32
// Note: Use this routine with a C compiler.

#include <sicl.h>
#include <uta.h>
#define DEVICE_ADDRESS "hpib7,23"
{
void UTADLL read_dvm (HUTAPB hParmBlock)

{
long lDVM_Function;

// HP TestCore API functions are used to return values
// from the parameter block.
UtaPbGetInt32(hParmBlock, "Function", &lDVM_Function);

UtaPbGetReal64Array
UtaPbSetReal64Array

Real64Array

UtaPbGetReal64Expr
UtaPbSetReal64Expr

Real64Expr

UtaPbGetString
UtaPbSetString

String

UtaPbGetStringArray
UtaPbSetStringArray

StringArray
 105

Working With Actions
Creating Actions in C

 you
look

his:

++

 ID.
double dRdg;
INST instID;
instID = iopen (DEVICE_ADDRESS);
iprintf (instID, "F%dRAN3T3\r\n" , lDVM_Function);
iscanf (instID, "%lf\r\n" , &dRdg);
UtaPbSetReal64(hParmBlock, "Result", dRdg);
iclose (instID);
_siclcleanup();
}

For more information about the API functions used in the example, see the
Reference book.

Using Parameter Blocks With a C++ Compiler

When you use a C++ compiler, HP TestExec SL’s parameter types are
defined as C++ classes that behave like ordinary C data types. This lets
write normal C code in action routines, except that variable declarations
slightly different.

When you declare a normal variable in C/C++, its declaration looks like t

<data type> <variable name>;

An example of this is:

long lMyVariable;

The syntax used when declaring variables for parameter blocks with a C
compiler in HP TestExec SL looks like this:

<data type> <variable name> (<handle to parameter block>, <parameter
name or ID>);

The definition syntax lets you look up a parameter either by name or by
An example of this is:

IUtaInt32 lMyVariable(hParmBlock, "MyParameter")

Here, IUtaInt32 is the C++ class that HP TestExec SL uses for long
(32-bit integer) data. lMyVariable is the name of the variable being
declared. hParmBlock is the handle to a parameter block that contains
parameters being passed into the action routine. MyParameter is the name
106

Working With Actions
Creating Actions in C
of a parameter (defined with the Action Definition Editor) in the parameter
block whose value is to be passed to this variable.

What about other data types? The list below shows the correspondence
between the names of the C++ classes and the types of parameters supported
by HP TestExec SL.

This C++ class. . . Corresponds to this parameter type

IUtaComplex Complex

IUtaInst Inst

IUtaInt32 Int32

IUtaInt32Array Int32Array

IUtaNode (reserved)

IUtaPath Path

IUtaPoint Point

IUtaPointArray (reserved)

IUtaRange Range

IUtaRangeArray (reserved)

IUtaReal64 Real64

IUtaReal64Array Real64Array

IUtaReal64Expr (reserved)

IUtaString String

IUtaStringArray StringArray

IUtaWaveform Waveform
 107

Working With Actions
Creating Actions in C
What might an example of using a parameter block look like? Suppose you
used the Action Definition Editor to define an action whose parameter block
contained these parameters:

As defined in the Action Definition Editor, the parameter block might look
like this:

Inside an action routine written using a C++ compiler, you could then use
the special declaration syntax to define three C variables corresponding to
the parameters, like this:

IUtaInt32 lAddend1(hParmBlock, "Addend1");
IUtaInt32 lAddend2(hParmBlock, "Addend2");
IUtaInt32 lSum(hParmBlock, "Sum");

This declaration associates parameters in the parameter block with variables
inside the action routine. After declaring the variables, you can use them as
you would normal C variables of the corresponding type. For example, you
can use lAddend1, lAddend2, and lSum as longs (32-bit integers).

Shown below is an excerpt from a simple action routine that uses the
parameter block and variable declarations described above to add two
integers and return their sum.

Parameter Name Parameter Type

Addend1 Int32

Addend2 Int32

Sum Int32
108

Working With Actions
Creating Actions in C

e.,

extern "C" { // Prevent C++ compiler from using name mangling
void UTADLL AddTwoIntegersExecute(HUTAPB hParmBlock)

{
// Declare local variables & associate them with parameters
// in parameter block.
IUtaInt32 lAddend1(hParmBlock, "Addend1");
IUtaInt32 lAddend2(hParmBlock, "Addend2");
IUtaInt32 lSum(hParmBlock, "Sum");

// add the values together
lSum = lAddend1 + lAddend2;
}

}

Something important to note here is that the result, Sum, is returned via a
parameter in the parameter block and not through a return data type—i.
there is no explicit “return” statement that returns the result. When using
parameter blocks, all passing of values between action code and
HP TestExec SL is done via parameters in the block.

A more extensive example of using parameter blocks looks like this:

// C action routine to program a DVM & return a reading.
// Note: Use this routine with a C++ compiler.

#include <sicl.h>
#include <uta.h>
#define DEVICE_ADDRESS "hpib7,23"
extern "C"
{
void UTADLL read_dvm (HUTAPB hParmBlock)

{
// Use special syntax to declare two variables and associate them
// with parameters in the parameter block.
IUtaReal64 dDVM_Result(hParmBlock, "Result");
IUtaInt32 lDVM_Function(hParmBlock, "Function");
 109

Working With Actions
Creating Actions in C
INST instID;
instID = iopen (DEVICE_ADDRESS);
iprintf (instID, "F%dRAN3T3\r\n" , lDVM_Function);
iscanf (instID, "%lf\r\n" , &dDVM_Result);
iclose (instID);
_siclcleanup();
}

}

The parameter block for the example above looks like this:

The special syntax for declaring C variables corresponding to the parameters
in the example looks like this:

IUtaReal64 dDVM_Result(hParmBlock, "Result");
IUtaInt32 lDVM_Function(hParmBlock, "Function");

Given these declarations, you can use dDVM_Result like a double and
lDVM_Function like a long (32-bit integer).

Some of the C++ classes directly correspond to standard C data types, as
shown below.

Note The Real64Expr parameter type is treated as a Real64 type.

Parameter Name Parameter Type

Result Real64

Function Int32

This C++ class . . . Corresponds to this C data type

IUtaInt32 int or long (whichever is 32 bits)

IUtaInt32Array int[] or long[] (whichever is 32 bits)

IUtaReal64 double

IUtaReal64Array double[]

IUtaString const char*
110

Working With Actions
Creating Actions in C

you
If the HP TestExec SL parameter type does not readily correspond to a C
data type, the argument passed to the user routine behaves as if it is of type
HUTADATA. To access the value of an argument passed as this type, your
action routine must use special access routines defined for that particular
data type.

The following list shows the correspondence between C++ classes,
parameter types in HP TestExec SL, and HUTA data types.

A set of API functions let you access these types of parameters. Also,
additional functions are provided for directly accessing the handles to the
various data types. For more information about these data types, the API
calls used with them, and how to read the syntax of the data types and APIs,
see the Reference book.

Exception Handling in C Actions

Note For an overview of exceptions, see “About Exceptions” in the Getting
Started book.

Various functions in the Exception Handling API let you use C actions to
raise and examine exceptions that occur during testing. Because it lets

C++ Class Parameter Type HUTA Data Type

IUtaComplex Complex HUTACOMPLEX

IUtaInst Inst HUTAINST

IUtaPath Path HUTAPATH

IUtaPoint Point HUTAPOINT

IUtaPointArray PointArray HUTAPOINTARRAY

IUtaRange Range HUTARANGE

IUtaRangeArray RangeArray HUTARANGEARRAY

IUtaStringArray StringArray HUTASTRINGARRAY

IUtaWaveform Waveform HUTAWAVEFORM
 111

Working With Actions
Creating Actions in C

ed
 to

ing
sting

handle exceptions at a low level, handling exceptions in actions can be more
precise than simply letting your testplan branch to an alternate sequence of
tests in the Exception Sequence.

The remainder of this topic shows some of the most useful concepts and
functions in the Exception Handling API. You can find a full list of these
API functions and their descriptions in Chapter 4 of the Reference book.

At the simplest level, the UtaExcRaiseUserError() function lets you
raise a user-defined exception in response to some anticipated error
condition. The example below shows how this works.

// Example causes the following to display in Report window when
// encountered while testplan is executing:
// Condition raised a user-defined exception! (Severity: 5)

char chMessage [60];
long lSeverity;
...(do something)
if (some condition == some value) // raise an exception?

{
strcpy (chMessage, "Condition raised a user-defined exception!");
lSeverity = 5;
UtaExcRaiseUserError(chMessage, lSeverity);
}

...(testing is aborted because exception occurred)

As noted in the example’s comments, unless they are specifically receiv
and handled otherwise, user-defined exceptions simply send a message
the Report window and abort testing.

However, much of the power in having user-defined exceptions lies in be
able to process them and act appropriately instead of simply aborting te
the first time an exception occurs. The next example uses several of the
Exception Handling API functions in a more meaningful way.
112

Working With Actions
Creating Actions in C
// Example can raise user-defined exceptions while action is doing
// tasks. Each exception has a severity level associated with it. Near
// the end of the action, a routine checks to see if exceptions
// occurred and receives them if they did. If the severity of an
// exception exceeds a threshold, a value of -1 is written to a
// parameter named "parm1" in the action’s parameter block. If "parm1"
// is a reference to a symbol in a symbol table, actions in other tests
// can access the symbol table to see if this action raised one or more
// "serious" exceptions.

HUTAEXC hUtaException;
long lSeverity, lNumExceptions, lCounter;
char chMessage[40];
...(do something)
// action routine contains one or more routines to see if an
// exception condition exists

if (some condition == some value) // raise an exception?
{
strcpy (chMessage, "Condition raised an exception!");
lSeverity = 10; // assign severity level to this exception
UtaExcRaiseUserError(chMessage, lSeverity); // raise exception
}

...(testing continues)

...

...(near end of testing)
if (UtaExcRegIsError()) // if exception(s) exist

{
lNumExceptions = UtaExcRegGetErrorCount(); // get # of exceptions
// receive all exceptions & get handle to first in list
hUtaException = UtaExcRegReceiveError();
for (lCounter = 1; lCounter <= lNumExceptions; lCounter++)

{
if (UtaExcGetSeverity(hUtaException) > 5) // test severity

UtaPbSetInt32(hParmBlock, "parm1", -1); // write to parm.
if (lCounter < lNumExceptions)

// get handle to next exception
hUtaException = UtaExcGetNextError(hUtaException);

};
};
 113

Working With Actions
Creating Actions in C

ing
en
In a similar fashion, you can raise, receive, and handle user-defined
exceptions specific to your testing environment. You have the choice of
handling exceptions immediately or, as in the example, postponing their
handling until later.

The API functions used the preceding example are listed below.

HP TestExec SL also has predefined exceptions for such conditions as math
errors, out-of-range values, and array dimensioning errors. These are listed
in the system file “uta.h”.

Using C Actions to Control Switching Paths

Overview

If you do not use hardware handler software to communicate with switch
modules, you must control switching directly from actions via your chos
I/O strategy. This requires you to write custom routines that tend to be
complex and may not be reusable.

This function... Does this...

UtaExcRaiseUserError() Raises a user-defined exception and lets
you specify an error message and severity
indicator to be associated with the
exception.

UtaExcRegIsError() Tests for the presence of one or more
exceptions that have been raised but not
yet received.

UtaExcRegGetErrorCount() Returns the number of exceptions that have
been raised and not yet received.

UtaExcRegReceiveError() Returns a handle to the first in a list of
exceptions.

UtaExcGetSeverity() Returns the severity level that was set when
the exception occurred.

UtaExcGetNextError() Given the handle to an exception, returns
the handle to the next exception if more
than one exception has been raised.
114

Working With Actions
Creating Actions in C

lly
the

n,

lets

d to
n

t do
ns

.

ers.
E
But if you are using a hardware handler, there are two better ways to control
switching during a test:

• You can use the Test Executive’s Switching Path Editor to graphica
control switching paths at the beginning and end of a test. This is
easiest method.

• You can use API functions to control switching paths from an actio
which lets you modify switching paths during a test. Because it
requires you to write code, this method is more difficult to use than
the Switching Path Editor. However, it is more versatile because it
you explicitly control switching as needed.

When action routines contain code that controls switching paths, they ten
be specific to a particular implementation of switching hardware. This ca
make them more specialized and less reusable than action routines tha
not control switching. In general, you can improve the reusability of actio
by specifying switching at the test level instead of inside action routines

Using API Functions to Control Switching Pathss

The C Action Development API contains the following functions you can
use to control switching from a C action routine.

The declaration of the UtaPathConnect() function is:

void UtaPathConnect (HUTAPATH hPath, BOOL bWait=TRUE);

UtaPathConnect() establishes the switching path specified by hPath,
which is most likely passed into the action routine as one of its paramet
The bWait parameter is optional; it defaults to TRUE, but if set to FALS
the function will return without waiting for relays to close.

API Function Purpose

UtaPathConnect() Establishes a switching path

UtaPathDisconnect() Resets all relays in a switching path

UtaPathWait() Waits for the switching relays to close before
returning
 115

Working With Actions
Creating Actions in C
An example using UtaPathConnect() might look like this:

UtaPathConnect (hPath);

The syntax of the UtaPathDisconnect() function is:

void UtaPathDisconnect (
HUTAPATH hPath,
BOOL bWait = TRUE
);

UtaPathDisconnect() resets all the relays along the path. Reset is
defined by the default positions of the switching elements. Thus, the path is
opened. The bWait parameter is optional; it defaults to TRUE, but if set to
FALSE the function will return without waiting for relays to open.

An example using UtaPathDisconnect() might look like this:

UtaPathDisconnect (hPath);

The UtaPathWait() function provides a way to tell the system to wait
for a specific path connection. Its syntax is:

void UtaPathWait (HUTAPATH hPath);

An example that includes UtaPathWait() might look like this:

UtaPathConnect (hPath, FALSE);
...(do something else while waiting)
// Ensures that path will be closed.
UtaPathWait (hPath);

Notice that unlike using UtaPathConnect() by itself with bWait set to
TRUE, having a UtaPathWait() function follow a
UtaPathConnect() whose value for bWait is FALSE lets you do other
tasks while waiting for the specified switching path, hPath, to be
established by UtaPathConnect().
116

Working With Actions
Creating Actions in C

you
ause

that

om

e

HP TestExec SL also provides a UtaPbGetPath() function you can use
to retrieve switching path data from parameter blocks and subsequently use
with the functions described above. An example of its use looks like this:

HUTAPATH hPath;
// Get the parameter specifying the path
hPath = UtaPbGetPath (hParameterBlock, "DcvPathLow");

// Close the path
UtaPathConnect (hPath);

// Take a measurement
// ... code that takes a measurement

// Open the Path
UtaPathDisconnect (hPath);

For more information, see “Functions for Manipulating Switching Paths
from Actions” in Chapter 2 of the Reference book.

Using States to Store Switching Data

Using the UtaPathConnect() and UtaPathDisconnect()
functions to control switching paths is convenient in simple cases, but
requires more work in more complex situations. For example, suppose
need to set up new paths temporarily and restore them later. This could c
you to write quite a few lines of code to track the changing states of
switching elements in switching paths.

To remedy this, the C Action Development API provides various
“UtaState...” functions used to create and manipulate “switching states”
contain one or more switching paths. You can find a complete list of them
and their syntaxes under “Functions for Manipulating Switching Paths fr
Actions” in Chapter 2 of the Reference book.

Consider the following example, which temporarily stores the state of th
switching hardware, adds to the state of the switching hardware a path
previously stored as “NewPath” in a parameter block, and subsequently
restores the switching hardware to its original state.
 117

Working With Actions
Creating Actions in C

; i.e.,
may
o

or
HUTASTATE hOriginalState; // variable for handle to switching state
HUTAPATH hPath; // variable for handle to switching path
hOriginalState = UtaStateCreate(); // create empty switching state
hPath = UtaPbGetPath(hParameterBlock, "NewPath"); // get path data
UtaStateMergePathState(hOriginalState, hPath); // define state’s scope
UtaStateUpdate(hOriginalState); // store current state of hardware
UtaPathConnect(hPath); // set hardware to path retrieved from NewPath
// Do tasks while new path is in effect
...
...(make a measurement, etc.)
...
// restore the hardware to its initial, stored state
UtaStateRecall(hOriginalState);
UtaStateRelease(hOriginalState); // free memory used by state object

How does the example work? Suppose we begin by using
UtaStateCreate() to create a switching state:

hOriginalState = UtaStateCreate();

In theory, an empty (uninitialized) switching state potentially could store
switching information for an entire test system. However, in reality it is
quicker and more convenient to work with a subset of all possible switching
hardware. A switching path defines just such a subset, so the next line gets
the data associated with an existing switching path stored in a parameter in a
parameter block, like this:

hPath = UtaPbGetPath(hParameterBlock, "NewPath");

Now we must merge the switching path data with the empty switching state
to define the scope of the switching state; i.e., which specific hardware out
of all possible hardware it describes. To do this, we use
UtaStateMergePathState(), as shown below.

UtaStateMergePathState(hOriginalState, hPath);

Now the range of the switching state is restricted to the path specified by the
data retrieved from the parameter named “NewPath”. Note that this data
may not describe the exact state of the switching elements that we need
relays or other programmable connections defined in the switching path
be in the wrong positions for our intended task. However, that causes n
problem because merging a path into a state changes nothing in the actual
hardware. Instead, the purpose of merging is simply to define the scope
extent of the switching state.
118

Working With Actions
Creating Actions in C

ions
ring
ingle

e

e

hed
he

d
Next we want to store the current status of the hardware—i.e., the posit
of the switching elements in the path of interest—before changing it. Sto
the hardware’s status in a switching state lets us store and recall it as a s
entity, instead of laboriously manipulating it via individual
UtaPathConnect() and UtaPathDisconnect() statements. We use
UtaStateUpdate() to update the state from the current settings of the
hardware:

UtaStateUpdate(hOriginalState);

Having safely stored the state of the switching hardware, we can use th
“NewPath” data to change it, like this:

UtaPathConnect(hPath);

After doing tasks that require the new switching path, we can restore th
original path in a single statement with UtaStateRecall():

UtaStateRecall(hOriginalState);

Now that we have returned the hardware to its original state, we are finis
using the state object created at the beginning of the example. To free t
memory it is using, we do this:

UtaStateRelease(hOriginalState);

For more information about switching states, see “Data Types Associate
with Switching” in Chapter 1 of the Reference book.
 119

Working With Actions
Creating Actions in C
Adding Revision Control Information for Actions

If desired, each DLL in which action code resides can include a string of text
for auditing purposes, such as revision control information. As shown below,
the text appears when listing the actions in a testplan.

The method for doing this is shown in the example of action code below.
You must add a macro named UTA_DECLARE_DLL_REVISION_TEXT
and specify the auditing text in it. Be sure to place the macro inside the scope
of the declaration for extern "C" when using a C++ compiler.

// File "MyAction.cpp"
#include "stdafx.h"
#include <uta.h>
#include "MyAction.h"

extern "C" { // Prevent C++ compiler from using name mangling

// All actions in this DLL share the following auditing information
UTA_DECLARE_DLL_REVISION_TEXT ("Your auditing text goes here...");

void UTADLL MyActionRoutine (HUTAPB hParmBlock)
{
...(code that implements the action routine)
return;
}

120

Working With Actions
Creating Actions in C

nd

ame

s.

ge.
...(additional action routines implemented in this DLL)

} // end extern "C"

Note You can add one string of auditing text per DLL. That string of text appears
in the listing for all actions implemented in the DLL. If you use multiple
source files for your DLL, be sure to specify the auditing text in only one of
them or you will generate an error.

Example of Creating a C Action in a New DLL

Note The topics in this section describe how to use the development environment
provided with Microsoft Visual C++. If you are using another C/C++
development environment, the details will vary but the concepts will be
similar.

This section, which assumes you are somewhat familiar with the mechanics
of using Visual C++, describes how to create a new action in a new DLL.
The emphasis is on the process of creating an action in C, not on what
belongs inside an action.

Defining the Action

Follow the general procedure described earlier in “Defining an Action” a
keep the following in mind when using the Action Definition Editor to
define actions written in C:

• Choose “DLL Style” as the action style.

• The executable code for the action must reside in a DLL. Enter the n
of that DLL as the library name for the action.

• You can define execute, setup, or setup/cleanup routines for C action

• For the Routine name, use the name of the C routine.

• Be sure to use parameter types that are appropriate for the C langua
 121

Working With Actions
Creating Actions in C

y

n
Specifying the Development Environment Options

You set the Visual C++ development environment options once, and then
they become the defaults for any new projects that you create.

Specifying the Path for Libraries

1. Choose Tools | Options in the Visual C++ menu bar.

2. In the Options box, choose the Directories tab and specify a path for
library files that includes the “lib” directory beneath the home director
in which HP TestExec SL is installed on your system. An example is
shown below.

Note Depending upon where you installed Visual C++ and HP TestExec SL o
your system, your paths may vary from those shown.
122

Working With Actions
Creating Actions in C

SL

n
Specifying the Path for Include Files

1. In the Options box, specify a path for include files that includes the
“include” directory beneath the home directory in which HP TestExec
is installed on your system. An example is shown below.

2. Click the OK button to save the path you specified.

Note Depending upon where you installed Visual C++ and HP TestExec SL o
your system, your paths may vary from those shown.

Creating a New DLL Project

1. Choose File | New in the Visual C++ menu bar.
 123

Working With Actions
Creating Actions in C

on as
2. Choose the Projects tab and specify Win32 Dynamic-Link Library as the
type of project, as shown below.

3. Type a Name for your project.

4. Specify the Location for your project.

Note The action definition created with HP TestExec SL’s Action Definition
Editor needs to reference this location. If you later recompile the DLL in
release mode and move it elsewhere, you need to specify its new locati
described in “Specifying the Search Path for Libraries” in Chapter 5.

5. Choose the OK button.
124

Working With Actions
Creating Actions in C
6. Choose to create an empty DLL project, as shown below.

7. Choose the Finish button.

8. Verify the information for the new project, as shown below.

9. Choose the OK button.

Specifying the Project Settings

You specify the project settings once for each new project you create.

1. Choose Project | Settings in the Visual C++ menu bar.

2. If needed, choose the General tab to make its options visible.
 125

Working With Actions
Creating Actions in C

 in

.

c
3. In the Project Settings box, specify the Microsoft Foundation Classes
(MFC) option.

An example of specifying “Use MFC in a Static Library” for the
Microsoft Foundation Classes option is shown below.

4. Choose the C/C++ tab to make its options visible.

5. Choose Precompiled Headers from the Category list.

Specify this... If you wish to do this...

Not Using MFC Create a DLL that is small and fast but

does not support MFC’s features.a This
option is most useful for reducing
overhead when you have many individual
action routines in many DLLs.

a. Generally speaking, MFC’s most useful feature insofar as actions are
concerned is that it lets you use visual resources, such as dialog boxes,
actions. In many cases these graphical features are not needed to
manipulate data or control instruments, and you do not need to use MFC

Use MFC in a Static

Libraryb

b. You should not use the MFC in a Shared Dll option because HP TestExe
SL already does this, and having different versions of MFC may cause
conflicts.

Use MFC’s features but have a large DLL.
Because the size of your action code
typically will be far smaller than the DLL’s
overhead, this option is most useful when
you have only a few DLLs and each of
them contains multiple, related action
routines.
126

Working With Actions
Creating Actions in C

ce
fter
ns.

n

 your

ject
6. Be sure “Automatic use of precompiled headers” is enabled.

7. Specify “stdafx.h” for the “Through header” option.

When you specify precompiled headers, the compiler will compile on
all the header files through the one specified in the dialog box, and a
that it will compile only your code. This speeds subsequent compilatio
An example of using these options is shown below.

8. Choose the Link tab to make its options visible.

9. Specify “utacore.lib” for the “Object/Library modules” option, as show
below.

Linking against “utacore.lib” lets the compiler resolve all the external
references to HP TestCore definitions, functions, and classes used in
action code. Because you already specified the default library path
earlier, you do not need to enter the full path here.

10.Choose the OK button to save the project settings and close the Pro
Settings box.
 127

Working With Actions
Creating Actions in C
Writing Source Files for the Action Code

There are a couple of ways to write action code. You may prefer to write the
code from scratch, or you can copy the code for an existing action and use it
as a template for a new action. Shown below are the contents of the sample
files needed to create a simple action from scratch. Put the files in the project
directory for your DLL.

Contents of the Header File:

// This file is MyAction.h
extern "C" void UTAAPI MyExecuteFunction(HUTAPB hParameterBlock);

Contents of the Implementation File:

// This file is MyAction.cpp
#include "stdafx.h"
#include <uta.h> // API for HP TestCore services
#include "MyAction.h"

CWinApp theApp; // Comment out or remove this line if not using MFC
extern "C"{ // Prevent C++ compiler from using name mangling
void UTADLL MyExecuteFunction(HUTAPB hParameterBlock)

{
// Action code to do a task goes here...
return;
}

}

Contents of the System-Level Include File:

// This file is stdafx.h
#define VC_EXTRALEAN // Exclude rarely used stuff
#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions

Although this code is used to create a DLL that contains a single execute
action, you could write multiple actions of various types and put them all in
a single DLL. Also, your actions typically will use parameters passed in a
parameter block.
128

Working With Actions
Creating Actions in C
Adding Source Files to the Project

Do the following for each of the source files above:

1. Choose File | New in the Visual C++ menu bar.

2. On the Files tab in the New box, specify the file’s type, name1, and
location, and choose the OK button to add it to your project.

An example of creating a header file is shown below.

3. Type the file’s contents in the editor window that appears.

1. Use a “.cpp” extension for your implementation file.
 129

Working With Actions
Creating Actions in C

rify

r.

n

rger
ant
Verifying the Project’s Contents

• Choose the FileView pane in the Visual C++ workspace window to ve
the contents of your project, as shown below.

Choosing Which Configuration to Build

1. Choose Build | Set Active Configuration... in the Visual C++ menu ba

2. Specify that you wish to build a debug version of the project, as show
below.

Note The debug version of a program contains additional code that makes it la
and slower to execute than a release version. Thus, you probably will w
to build a final, release version of the DLL after you have debugged it.

3. Choose the OK button.

Building the Project

• Choose Build | Build <project name> in the Visual C++ menu bar to
build the DLL.
130

Working With Actions
Creating Actions in C

pen

y a

.

s.
Copying the DLL to Its Destination Directory

Overview

Each time you create a DLL containing action routines, you need to copy the
DLL to the destination directory where it will be used. You can greatly
simplify and reduce potential errors in the copying process by creating one
or more custom tools in Visual C++.

Note Any time you move a DLL, you potentially need to need to specify its new
location as described in “Specifying the Search Path for Libraries” in
Chapter 5. Also, if you are running a testplan, you need to close and reo
it before new or moved files will take effect.

Creating a Custom Tool to Copy the DLL

1. Choose Tools | Customize in Visual C++’s menu bar.

2. In the Customize box, choose the Tools tab.

3. Choose the New icon that appears above the “Menu contents” list.

4. In the blank field that just appeared in the “Menu contents” list, specif
descriptive label for what this tool does.

5. Type xcopy as the Command.

6. Click the arrow to the right of the Arguments field.

7. Choose Target Path from the list that appears.

8. Enter quotes around the $(TargetPath) entry in the Arguments field.

9. To the right of "$(TargetPath)" in the list of Arguments, type the
name of the destination directory to which your DLL should be copied

Tip: If your pathname includes spaces, be sure to enclose it in quote

10.Enable the check box labeled Use Output Window.
 131

Working With Actions
Creating Actions in C
11.Choose the Close button.

Shown below is an example of specifying the options for this custom tool.

Using the Custom Tool to Copy the DLL

1. Choose Tools in Visual C++’s Tools menu bar.

2. Choose the custom tool from the menu of tools.

When the tool runs, its results appear in Visual C++’s output window.
132

Working With Actions
Creating Actions in C
Example of Defining a C Action

The illustration below shows how information you specify in the Action
Definition Editor relates to the associated code in a C action routine.

// File "MyAction.cpp" (Source for MyAction.dll)

#include "stdafx.h"
#include <uta.h>
#include "MyAction.h"

extern "C" {
void UTADLL AddTwoIntegersExecute (HUTAPB hParmBlock)

{
IUtaInt32 Addend1 (hParmBlock, "Addend1");
IUtaInt32 Addend2 (hParmBlock, "Addend2");
IUtaInt32 Sum (hParmBlock, "Sum");
Sum = Addend1 + Addend2;
return;
}

}

 133

Working With Actions
Creating Actions in C

r

+

r

o

e
Adding a C Action to an Existing DLL

Follow this general procedure to add a new C action to an existing DLL:

1. Use HP TestExec SL’s Action Definition Editor to create a definition fo
the new action. When you specify the library, use the name of the
existing “.dll” file to which you want to add the new action.

2. If the existing DLL was created using a different compiler or different
compiler options, verify that your C/C++ development environment’s
options are similar to those described earlier in “Specifying the C/C+
Development Environment Options.”

3. Use your development environment to open the project workspace o
make (“.mak”) file—i.e., whichever method your C/C++ development
environment uses to manage projects—for the existing DLL.

4. Add the code for the new action to the implementation (“.cpp”) file.

The example below shows the code for an implementation file used t
create a DLL that contains two action routines. Notice that the
declaration for extern "C" encompasses both functions, and that th
implementation file uses the UTADLL macro in the functions.

// File is "MyAction.cpp"
#include "stdafx.h"
#include <uta.h>
#include "MyAction.h"

extern "C" { // Prevent C++ name mangling

// Function that adds two integers
void UTADLL AddTwoIntegersExecute (HUTAPB hParmBlock)

{
IUtaInt32 Addend1 (hParmBlock, "Addend1");
IUtaInt32 Addend2 (hParmBlock, "Addend2");
IUtaInt32 Sum (hParmBlock, "Sum");
Sum = Addend1 + Addend2;
return;
}

134

Working With Actions
Creating Actions in C

e
s a
I

n
es

n

re
// Function that adds two reals
void UTADLL AddTwoRealsExecute (HUTAPB hParmBlock)

{
IUtaReal64 Addend1 (hParmBlock, "Addend1");
IUtaReal64 Addend2 (hParmBlock, "Addend2");
IUtaReal64 Sum (hParmBlock, "Sum");
Sum = Addend1 + Addend2;
return;
}

} // end extern "C"

5. Add the declaration for the new action to the header (“.h”) file.

The example below shows the code for a header file that contains th
prototypes for two action routines. Notice that each prototype include
declaration for extern "C", and that the header file uses the UTAAP
macro in the prototypes.

//File is "MyAction.h"
extern "C" void UTAAPI AddTwoIntegersExecute(HUTAPB hParmBlock);
extern "C" void UTAAPI AddTwoRealsExecute(HUTAPB hParmBlock);

6. Rebuild the DLL.

Tip: You can use the “dumpbin” utility provided with Visual C++ to
browse the contents of an existing DLL. The example below shows a
excerpt from a “dumpbin /exports” listing that shows the exported nam
of the functions in a DLL.

ordinal hint name
 1 0 _DisplayExceptions@4 (00001680)
 2 1 _EchoInt32@4 (00001040)
 3 2 _EchoReal64@4 (000010A0)
 4 3 _RandomFailReal64@4 (000012B0)

Note Any time you move a DLL, you potentially need to specify its new locatio
as described in “Specifying the Search Path for Libraries” in Chapter 5.
Also, if you are running a testplan, you need to close and reopen it befo
new or moved files will take effect.
 135

Working With Actions
Creating Actions in C

re
Debugging C Actions

You can debug C actions with the debugging tools provided by the C/C++
environment in which you program. The general sequence of events when
using your C/C++ environment for debugging is:

Note Debugging may require that you build a new DLL specifically for debug
purposes.

Note Any time you move a DLL, you potentially need to specify its new location
as described in “Specifying the Search Path for Libraries” in Chapter 5.
Also, if you are running a testplan, you need to close and reopen it befo
new or moved files will take effect.
136

Working With Actions
Creating Actions in C

Note If your debug process causes you to modify and recompile a DLL that
contains action code, you cannot simply copy the modified DLL over the
existing DLL while HP TestExec SL has a testplan loaded that uses that
DLL. Instead, you must close the testplan, copy the modified DLL over the
existing DLL, and then reload the testplan.

Follow this general procedure to debug a C action:

1. Run your C/C++ development environment.

2. Specify “<HP TestExec SL home>\bin\tstexcsl.exe” as the program to
support debug.

An example of doing this in Visual C++ is shown below.

3. Set the desired breakpoints in the implementation file (“.cpp”) for the
action.

An example of doing this in Visual C++ is shown below.

4. Choose whichever button or command runs your debugger.
 137

Working With Actions
Creating Actions in C

ction.

p a
ernal
In Visual C++, choose Build | Start Debug | Go in the menu bar.

5. After HP TestExec SL has loaded, load or create a testplan that invokes
the action being debugged.

6. Run the testplan.

7. When the breakpoint in your action code is reached and control is
returned to the debugger, use the debugger’s features to debug the a

Another useful debugging technique is to create action code that pops u
message box or dialog box and stops test execution so you can use ext
instruments to diagnose problems.
138

Working With Actions
Creating Actions in HP VEE

ble
.

 a
Creating Actions in HP VEE
HP TestExec SL lets you write actions in HP VEE and take advantage of
HP VEE’s features, such as debugging and instrument control. Executa
HP VEE actions are HP VEE user functions stored in an HP VEE library

Creating an action in HP VEE is a two-step process. You can do the
following steps in any order:

• Use HP VEE to create the functions used by the action, and save the
resulting user functions in the HP VEE library.

• Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

See also: “HP VEE Considerations” in Chapter 2 of the Getting Started
book.

Restrictions on Parameter Usage in HP VEE

HP VEE only lets you pass certain types of parameters. Shown below is
list of those types and how they correspond to one another in both
environments.

In HP TestExec SL In HP VEE

Data Type: Data Type: Shape:

Int32 Int32 Scalar

Int32Array Int32 Array

Real64 Real Scalar

Real64Array Real Array

String Text Scalar

StringArray Text Array
 139

Working With Actions
Creating Actions in HP VEE

E
e

he

ction

ers,
Note As shown below, you must explicitly specify a data type for pins in
UserFunctions; i.e., do not use the Any type.

Defining an HP VEE Action

Be aware of the following when using the Action Definition Editor to create
HP VEE action definitions:

• You must choose “HP VEE” as the action style.

• When defining the action library name, enter the name of the HP VE
library—e.g., “mylib.vee”—that contains the user function that does th
action.

• For the Routine name, enter the name of the HP VEE function; i.e., t
user function in the specified HP VEE library.

Example of an HP VEE Action

This section provides a simple example of how parameters are passed
between HP TestExec SL and action code created using HP VEE. The a
is done by an HP VEE user function that receives two parameters from
HP TestExec SL, generates a random number based on those paramet
and then passes the result back to HP TestExec SL.

Do not
use this
option
140

Working With Actions
Creating Actions in HP VEE

e
tion

EE
All that is required to pass parameters between HP TestExec SL and
HP VEE is to:

• Make the names of parameters in the HP VEE user function match th
names of corresponding parameters specified for the action in the Ac
Definition Editor.

• Make the name of the HP VEE function match the name of the action
code specified in the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“random.umd” located in an action library where you chose to store HP V
action definitions.

Action name random

Description Generates a random number.

Library name c:\project\vee\mylib.vee

Routine name my_random

Parameters (All parameters are of type Real.)

low The low range value for the random number generator.

high The high range value for the random number generator.

result The resulting value from the HP VEE random number
generator (designated as an OUTPUT in the Action
Definition Editor).
 141

Working With Actions
Creating Actions in HP VEE

g

 to

the
og
The corresponding HP VEE user object used to create the user function for
this definition might look like this:

Debugging HP VEE Actions

In a production environment, you probably want HP TestExec SL to
schedule HP VEE in run-only mode. However, this means that none of
HP VEE’s command menus are present, which prevents you from settin
breakpoints, editing files, starting or stopping programs, or controlling
HP VEE in any way.

The Action Definition Editor provides an option that helps you debug
HP VEE actions. If you click to select the Debug check box in the Action
Definition window, HP VEE will be run in debug mode. After you have
debugged your actions, unselect the box to return to run-only mode.

Tip: While debugging HP VEE actions, you can edit UserFunctions by
running another copy of HP VEE and making edits there. After editing a
UserFunction, be sure to save the changes to disk with File | Save in
HP VEE. Then close and reopen the current testplan in HP TestExec SL
load the changes.

Error Handling in HP VEE

If you select the Debug check box in the Action Definition Editor’s Action
Definition window, errors in HP VEE will not cause exceptions. Instead,
normal HP VEE processing will handle the error. An error message dial
box will appear, giving the complete text of the error message and
highlighting in red the HP VEE object containing the error.
142

Working With Actions
Creating Actions in HP VEE

ls

 the
s

Controlling the Geometry of HP VEE Windows

If desired, you can specify the geometry for the window in which HP VEE
actions appear. Use a text editor, such as WordPad in its text mode, to add
two lines in the following format to the “tstexcsl.ini” file in HP TestExec
SL’s home directory (which by default is “\Program Files\HP TestExec

SL”).1

[VEE Actions]
Geometry=WidthxHeight+XOffset+YOffset

All dimensions are measured in pixels.

The example below specifies a window that is 800 pixels wide, 500 pixe
high, and originates in the upper-left corner of the screen.

[VEE Actions]
Geometry=800x500+0+0

Executing HP VEE Actions on a Remote System

If desired, you can execute HP VEE actions on a host system other than
one on which you are running HP TestExec SL. Use a text editor, such a
WordPad in its text mode, to add two lines in the following format to the
“tstexcsl.ini” file in HP TestExec SL’s home directory (which by default is

“\Program Files\HP TestExec SL”).2

[VEE Actions]
HostName=RemoteActionHost

where RemoteActionHost is the domain name or IP address of a remote
system where HP VEE is installed. For example,

[VEE Actions]
HostName=hplvlfl.lvd.hp.com

or

[VEE Actions]
HostName=15.11.89.216

1. If the [VEE Actions] section already exists, simply add the missing line to it.
2. If the [VEE Actions] section already exists, simply add the missing line to it.
 143

Working With Actions
Creating Actions in HP VEE
Note An action executing on a remote system appears in a window on the remote
system.
144

Working With Actions
Creating Actions in National Instruments LabVIEW

s
ents

ss.

ion,
Creating Actions in National Instruments
LabVIEW
HP TestExec SL lets you write actions in National Instruments LabVIEW
and take advantage of National Instruments LabVIEW’s features, such a
debugging and instrument control. Executable code for National Instrum
LabVIEW actions is National Instruments LabVIEW virtual instruments
(VIs) stored in a National Instruments LabVIEW library (“.llb”) file.

Creating an action in National Instruments LabVIEW is a two-step proce
You can do the following steps in any order:

• Use National Instruments LabVIEW to create the VIs used by the act
and save the resulting routines in the library.

• Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.
 145

Working With Actions
Creating Actions in National Instruments LabVIEW

 of
Related Files

HP TestExec SL includes the following National Instruments
LabVIEW-related files:

Restrictions on Parameter Passing

Be aware of the following restrictions when passing parameters between
HP TestExec SL and National Instruments LabVIEW:

• You can only pass certain types of parameters. Shown below is a list
those types and how they correspond to one another in both
environments.

uta.llb Contains predefined VIs for passing parameters to and from
HP TestExec SL. Located in directory “\<HP TestExec SL
home>\libs”.

We suggest that you place this library in a subdirectory
called “uta.lib” in the National Instruments LabVIEW
installation directory. If you do not want to create a
subdirectory of that name, install the library in another
subdirectory of the National Instruments LabVIEW
installation directory and make sure the directory has a “.lib”
extension.

utaactn.llb Contains a VI used to ask National Instruments LabVIEW to
execute specific VIs for HP TestExec SL. Note that the front
panel of this VI occupies a small amount of space on your
monitor’s screen. Located in directory “\<HP TestExec SL
home>\bin”.

In HP TestExec SL In National Instruments LabVIEW

Data Type: Data Type:

Int32 Signed 32-bit integer

Int32Array Array of signed 32-bit integers

Real64 Eight-byte double precision number
146

Working With Actions
Creating Actions in National Instruments LabVIEW

s.

s
 a

A

tive
VIs
es of

 of
• You must use a VI to pass parameters between the two environment

Custom VIs provided by Hewlett-Packard let you make a graphical
connection between parameters in HP TestExec SL and standard VI
used with National Instruments LabVIEW. Parameters are passed in
named block or group.

To access an HP TestExec SL parameter, place one of the VIs from
library “uta.llb” in the diagram of the action’s VI. If the library was
installed correctly, you can select VIs in it by choosing Functions | UT
in National Instruments LabVIEW.

List of Custom VIs Provided with HP TestExec SL

The functionality of VIs that pass parameters is viewed from the perspec
of the National Instruments LabVIEW environment. Thus, the names of
that send a value to HP TestExec SL contain the word “set” and the nam
VIs that retrieve a value from HP TestExec SL contain the word “get.”

The custom VIs provided with HP TestExec SL that support the passing
parameters are:

Real64Array Array of eight-byte double precision numbers

String C string

StringArray Array of C strings

UtaPbGetInt32.vi Obtains the value of Int32 parameters.

UtaPbSetInt32.vi Updates Int32 parameters with new values.

UtaPbGetInt32Array.vi Obtains the value of Int32Array parameters.

UtaPbSetInt32Array.vi Updates Int32Array parameters with new
values.

UtaPbGetReal64.vi Obtains the value of Real64 parameters.

UtaPbSetReal64.vi Updates Real64 parameters with new values.

UtaPbGetReal64Array.vi Obtains the value of Real64Array
parameters.
 147

Working With Actions
Creating Actions in National Instruments LabVIEW
An additional VI is provided that lets you use National Instruments
LabVIEW to control a switching path:

As with other VIs used with National Instruments LabVIEW, these custom
VIs have front panels and onscreen help you can browse to learn more about
them. An example of help for UtaPbGetInt32.vi shown below.

Defining a National Instruments LabVIEW Action

Be aware of the following when using the Action Definition Editor to define
National Instruments LabVIEW actions:

• You must choose “LabVIEW” as the action style.

UtaPbSetReal64Array.vi Updates Real64Array parameters with new
values.

UtaPbGetString.vi Obtains the value of String parameters.

UtaPbSetString.vi Updates String parameters with new values.

UtaPbGetStringArray.vi Obtains the value of StringArray parameters.

UtaPbSetStringArray.vi Updates StringArray parameters with new
values.

UtaPathConnectNodes.vi Connects nodes in a switching path. Useful if
you need to modify a switching path within
an action.
148

Working With Actions
Creating Actions in National Instruments LabVIEW
• For the Library name, enter the name of the National Instruments
LabVIEW VI library, including its “.llb” extension.

• For the Routine name, enter the National Instruments LabVIEW VI
name, including its “.vi” extension; i.e., the action VI in the specified
library.

Example of a National Instruments LabVIEW Action

Shown below is a simple example of a VI created using National
Instruments LabVIEW with two of the custom VIs provided with
HP TestExec SL.

The example shows how custom VIs are used to pass parameters between
HP TestExec SL and National Instruments LabVIEW. Here, the custom VI
named UtaPbGetReal64 gets a parameter from the HP TestExec SL
environment. The output from UtaPbGetReal64 is connected to the
input of the standard National Instruments LabVIEW VI used to take the
square root of a number. The resulting square root is connected to the custom
UtaPbSetReal64 VI, which passes the result back to HP TestExec SL.

Shown below is the information you would use the Action Definition Editor
to specify for this example. Notice how the names of parameters in the
action definition match the names of the parameters of each library VI.

Action name lvsqrt

Description Takes the square root of a number.

Library name c:\labview\cmlib.lib

Routine name sqrt.vi
 149

Working With Actions
Creating Actions in National Instruments LabVIEW

n,
 VI

L
you
tion
 the

 from

”
The action definition is stored in a file called “lvsqrt.umd” located in a
standard library for National Instruments LabVIEW action definitions.

Setting Interface Options for National Instruments
LabVIEW

When HP TestExec SL executes a National Instruments LabVIEW actio
the front panel of the VI associated with the action is displayed while the
executes. This lets a test operator use the panel.

You can control the size and location of this panel. When HP TestExec S
executes the action, the panel window appears at the location and size
set when developing the action. If the action does not require any interac
with the test operator, you can make the panel size very small and place
panel in an inconspicuous part of the screen. This prevents the operator
being distracted by the panel.

You can also control which menus and toolbars display with the panel
window, how the panel window looks, and numerous other options. Set
these options by choosing the “Window Options” mode of the “VI Setup
dialog box in National Instruments LabVIEW.

Parameters (All parameters are of type Real64.)

InputNum The number to be passed to National Instruments
LabVIEW whose square root is to be taken.

OutputNum A parameter to hold the square root of the input number
(designated as an OUTPUT in the Action Definition
Editor).
150

Working With Actions
Creating Actions in HP BASIC for Windows

m.

, it
Creating Actions in HP BASIC for Windows
HP TestExec SL lets you write actions in HP BASIC for Windows and take
advantage of your familiarity with that instrument control language.
Executable HP BASIC for Windows actions are SUB programs you write
and add to a program that runs HP BASIC for Windows as a server for
HP TestExec SL. Besides containing SUB programs that implement actions,
the server program loads the graphical I/O environment (HP BASIC Plus),

does any desired autostart configuration tasks, and runs the IPC Widget1 that
lets HP BASIC for Windows and HP TestExec SL communicate.

Creating an action in HP BASIC for Windows is a multi-step process. You
can do the following steps in any order.

• Use HP BASIC for Windows to append one or more SUB programs
containing your action code to a copy of the server template in file
“server.prg”. This creates your HP BASIC for Windows server progra

• Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

• Use the HP BASIC for Windows “rmb_conf.exe” utility to “register”
your server program and define its communications characteristics.

Note When HP TestExec SL calls an action written in HP BASIC for Windows
automatically loads and runs HP BASIC for Windows.

1. In HP BASIC for Windows, a “widget” is an entity created on the screen
with an ASSIGN statement from an executing HP BASIC Plus program.
 151

Working With Actions
Creating Actions in HP BASIC for Windows
Related Files

HP TestExec SL includes the following HP BASIC for Windows-related
files:

HP TestExec SL installs these files in the home directory in which
HP BASIC for Windows is installed.

Restrictions on Parameter Usage in HP BASIC for
Windows

HP BASIC for Windows only lets you pass certain types of parameters.
Shown below is a list of those types and how they correspond to one another
in both environments.

rmb_conf.exe A utility used to define the characteristics of your
HP BASIC for Windows server program.

server.prg An HP BASIC for Windows program file for use as a
template when creating your HP BASIC for Windows
server program.

wiipc.dll The IPC Widget used by the HP BASIC for Windows
server program.

wiipc.hlp A help file for the IPC Widget.

widgcom.dll A helper DLL for the IPC Widget.

widgcom.csb An HP BASIC for Windows CSUB used by the
HP BASIC for Windows server program.

In HP TestExec SL In HP BASIC for Windows

Data Type: Data Type:

Int32 INTEGER (16-bit)

Int32Array INTEGER Array

Real64 REAL

Real64Array REAL Array
152

Working With Actions
Creating Actions in HP BASIC for Windows

Do

 the
For
Note Integers are 32-bit in HP TestExec SL and 16-bit in HP BASIC for
Windows. If you pass Int32 or Int32Array data to an HP BASIC for
Windows action, be sure to restrict the value to a 16-bit range; i.e., -32768
through +32767. If you need values outside this range, use Real64 types
instead of Int32.

Defining an HP BASIC for Windows Action

Be aware of the following when using the Action Definition Editor to create
HP BASIC for Windows action definitions:

• You must choose “HP RMB” as the action style.

• Leave the Library Name field blank.

• For the Routine name, enter the name of the HP BASIC for Windows
subprogram; i.e., the name of a SUB in the HP BASIC for Windows
server program.

Creating an HP BASIC for Windows Server Program

Action code you write in HP BASIC for Windows resides in a server
program that you create from a template provided by Hewlett-Packard.
the following to create the server program:

1. Start HP BASIC for Windows if it is not already running.

2. Copy the server template (“server.prg”) to a new name, which will be
name of the server program that contains the action code you write.
example,

copy "server.prg" to "MyServer.prg"

Complex COMPLEX

String String

StringArray String Array
 153

Working With Actions
Creating Actions in HP BASIC for Windows

r

ew

e

UB
 and
D
rs to
 data
e

am.

nect

3. On the HP BASIC for Windows command line, load the renamed server
template. For example,

load "MyServer.prg"

4. Type “edit” on the command line and press Enter to begin editing you
server program.

5. Add code that implements one or more actions. Begin adding your n
code on a new line beyond the end of the existing program.

Action code follows the general form shown below (line numbers hav
been omitted).

...(existing code in server template)
SUB <name of action routine>
COM /<name of action routine>/ <data type> <parameter name>
...
...(code that does a task suitable for an action)
...
SUBEND

Notice that the name of the action routine must be the same in the S
and COM statements. Each action routine must have a unique name
its code must reside within its own matching pair of SUB and SUBEN
statements. If you need to pass more than one data type in paramete
your action specified in a COM statement, use spaces between each
type and its first parameter, and commas as delimiters elsewhere, lik
this:

<data type 1> <parm>,<parm>,<data type 2> <parm>,<parm>

Keep the following in mind when writing actions:

• Place all the actions for any given testplan in a single server progr

• Do not use the STOP statement. It will cause the server to discon
from HP TestExec SL.

• Use ON ERROR and ON TIMEOUT trapping where appropriate to
avoid a paused—i.e., “hung”—call to an action.
154

Working With Actions
Creating Actions in HP BASIC for Windows

ave

nd
ust

er

ing

e
ose

stead

ify
lans.
tion
P

u
er
• We recommend that you do not use ON...RECOVER unless you h
a thorough understanding of program flow when using a server.

• Remember that HP TestExec SL waits for your SUB to complete a
return. Thus, if you use PAUSE or DIALOG statements, the user m
interact with HP BASIC for Windows instead of with HP TestExec
SL to restore testplan flow. But if HP BASIC for Windows is
iconified, the user will be unaware that interaction is required. Eith
be sure users know when interaction is required or add GESCAPE
CRT,32 at the beginning of interactive SUBS to keep them from be
iconified.

6. Save the edited server template. For example,

re-store "MyServer.prg"

7. Run the server configuration utility (“rmb_conf.exe”), specify the nam
of your modified server template in its Server Program field, and cho
the OK button to save the change and exit.

Note Do not use spaces in pathnames in the configuration utility. Instead, use
short pathnames as they appear in a DOS shell window. For example, in
of typing “c:\Program Files\HPBASIC” you must type
“c:\Progra~1\HPBASIC”.

Note Unless you have all of your HP BASIC for Windows actions in a single
server program, you must rerun the server configuration utility and spec
the name of the appropriate server program each time you change testp
If you change testplans often, you may want to add the server configura
utility to the Tools menu, as described under “Adding Custom Tools to H
TestExec SL” in Chapter 6.

Note Actions execute the fastest when HP BASIC for Windows is iconified. Yo
can use the Start As option in the “rmb_conf.exe” utility to specify wheth
your server program starts as an icon or a window.
 155

Working With Actions
Creating Actions in HP BASIC for Windows

s the
 the

he

e.

ar in
Example of an HP BASIC for Windows Action

This section provides a simple example of how parameters are passed
between HP TestExec SL and action code created using HP BASIC for
Windows. The action is done by an HP BASIC for Windows SUB program
that receives one parameter—a radius—from HP TestExec SL, generate
diameter and area of a circle based on that parameter, and then passes
results back to HP TestExec SL via two other parameters.

All that is required to pass parameters between HP TestExec SL and
HP BASIC for Windows is to do the following in your server program:

• Make the name of the HP BASIC for Windows SUB program match t
name of the action routine specified in the Action Definition Editor.

• Create a labeled COM block with a name that matches the SUB nam

• List the parameters in the COM block in the same order as they appe
the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“circle.umd” located with your HP BASIC for Windows actions.

Action name Circle

Description Calculates the diameter and area of a circle from its
radius.

Library name (none)

Routine name Circle_math

Parameters (All parameters are of type REAL.)

Radius The specified radius of the circle.

Diameter The calculated diameter of the circle (designated as an
Output).

Area The calculated area of the circle (designated as an
OUTPUT in the Action Definition Editor).
156

Working With Actions
Creating Actions in HP BASIC for Windows
The corresponding HP BASIC for Windows SUB used to implement the
action might look like this (line numbers have been omitted):

...(existing code in server program)
SUB Circle_math
COM /Circle_math/ REAL Radius,Diameter,Area
!
Diameter=2*Radius
Area=PI*(Radius^2)
SUBEND

And the corresponding configuration for the server program might look like
this:

Debugging HP BASIC for Windows Actions

You can use standard features of the interactive HP BASIC for Windows
environment when debugging actions. For example, you can pause,
single-step, interrogate or modify the values of variables, list program
segments, and use various debugging features provided by HP BASIC for
 157

Working With Actions
Creating Actions in HP BASIC for Windows

s

As

.

T
xec

e
t 0
Windows. Also, keep the following in mind when debugging HP BASIC for
Windows actions:

• Although the performance of actions created in HP BASIC for Window
actions is best when HP BASIC for Windows is iconified, interactive
debugging requires a normal—i.e., non-iconified—window. The Start
option in the “rmb_conf.exe” utility lets you specify whether your
HP BASIC for Windows server program starts as a window or an icon
Once started, you can use standard mouse interaction in Windows to
maximize, minimize, or move the window.

• While interacting with HP BASIC for Windows, do not STOP or RESE
the program because a stopped server disconnects from its HP TestE
SL client. You can use PAUSE, STEP, and CONTINUE.

• If you plan to interact with your HP BASIC for Windows workspace, w
strongly recommend that you leave the value of IPC Client Timeout a
(zero) in the “rmb_conf.exe” utility. Otherwise, a paused action will
eventually generate a timeout error.
158

4

Working with Switching Topology

This chapter describes how to use switching topology, which is a combination
of physical and logical descriptions that define the switching configuration and
interconnections between resources and the unit under test.

For an overview of switching topology, see Chapter 3 in the Getting Started
book.
159

Working with Switching Topology
Defining the Switching Topology

o
o,
ble

 the
hing
aths.

gy

, it

nect
Defining the Switching Topology
When you “define” switching topology, you describe its characteristics s
the Test Executive is aware of switchable paths in your test system. Als
you make the Test Executive aware of hardware modules that are availa
as resources during testing.

Note Your overall goal in defining the switching topology is to describe the
hardware well enough to let the Switching Path Editor control switching
paths during a test, but not so well that you describe every nuance of how
test system is wired. Thus, your emphasis should be on describing switc
paths inside modules and any wires that interconnect these switching p

Overview

The Switching Topology Editor lets you define the three layers of topolo
for your test system. This topology information resides in three files:

When you specify which layer to create in the Switching Topology Editor
loads the appropriate file.

Shown below is an example we will work through. Let us begin at a
conceptual level and identify the task at hand. Suppose our goal is to con

<system_name>.ust Contains a definition of the system layer.

<fixture_name>.ust Contains a definition of the fixture layer.

<UUT_name>.ust Contains a definition of the UUT layer.
160

Working with Switching Topology
Defining the Switching Topology

e in
 the

e,
an instrument to pins on the UUT so the instrument can make a
measurement. To provide flexibility in connecting the instrument, an
Instrument Matrix module connects the instrument to an analog bus structure
connected to two Relay Matrix modules. One of these modules—the on
which you are interested—is connected to a mass interconnect, which is
nexus for connections between the test system and the UUT. From ther
fixturing or cabling connects the mass interconnect to the UUT.
 161

Working with Switching Topology
Defining the Switching Topology

the

d by

e
The conceptual diagram above lacks details needed to describe real
hardware, such as pin numbers and connectors. These details are shown
next.

Matching Physical Hardware to Logical Names

Where Do the Names of Switching Paths Come From?

One question upon examining the example above might be, “Where do
names of signal paths used in switching, such as InstMatrix:ABus1,
come from?” The names of switching paths inside a module are assigne
whoever develops the hardware handler for the module. The Switching
Topology Editor lets you use these names to define your test system's
topology. The names of other items, such as the pins on connectors, ar
162

Working with Switching Topology
Defining the Switching Topology
defined by you and usually reflect the physical characteristics of the item.
For example, conn1-1 is pin 1 of the connector named conn1.

In the example above, the hardware handler’s developer chose
InstMatrix as the name for the 2 X 2 Instrument Matrix Module. In a
similar fashion, the first 2 X 4 Relay Matrix Module was named
PinCard1. Both of these modules contain switching elements that connect
rows with columns when they close. The columns in the InstMatrix
module connect to an instrument, so they are named
InstMatrix:Instr1 and InstMatrix:Instr2, and the rows in
InstMatrix connect to the analog bus, so they are named
InstMatrix:ABus1 and InstMatrix:ABus2.

The important thing to realize here is that the intersection of any two of these
identifiers is a switching element that can be controlled by the Test
Executive during a test. For example, at the intersection of
InstMatrix:Instr1 and InstMatrix:ABus2 is a relay that, when
closed, connects the hi side of the DVM to the second analog bus. If this
connection is needed during a test, then you could use the Switching Path
Editor to tell the Test Executive when to close (and reopen) it.

Switching elements inside module PinCard1 connect the analog busses
with wiring to the mass interconnect, which is the interface between the test
system and the cabling/fixturing that connects to test system to the UUT.
Connections on the analog bus are denoted the same as their counterparts in
the InstMatrix module, while columns in PinCard1 are identified in a
more generic sense as PinCard1:Col1 through PinCard1:Col4.

Using Aliases to Simplify the Names of Switching Paths

Although this approach accurately describes the hardware, it lacks
convenience for test developers who must remember which connection is
which when using the Switching Path Editor. For example, the name
InstMatrix:Instr2 provides no clue as to what that signal path
actually is.

The remedy for this is to use aliases. Aliases let you simplify the definition
of the hardware. For example, instead of referring to
InstMatrix:Instr2 you could assign it an alias of DVM_low. From
then on, you could think in terms of “Connect DVM_low to. . ." instead of
"Connect InstMatrix:Instr2 (whatever that is!) to. . ."
 163

Working with Switching Topology
Defining the Switching Topology

i.e.,

 As
y
ame,

mes:

or
When Should I Specify Wires?

Remember that the Switching Topology Editor also lets you define wires in
each layer. An example of a wire is the wire that connects
InstMatrix:ABus1 to PinCard1:ABus1. Because this is a
connection between modules whose characteristics are modeled in a
hardware handler, you should describe it as part of the topology.

What about the wires that connect the DVM to InstMatrix? Should they
be defined too? Probably not, because defining them offers no additional
functionality. Because instruments (and connectors) are not modeled—
they are not defined in hardware handler software—HP TestExec SL is
unaware of their characteristics and cannot control them.

What Happens If a Node Has Multiple Names?

Each named electrical point in the switching topology is called a “node.”
described above, the use of aliases and wires lets a node in the topolog
potentially have more than one name. But if a node has more than one n
which name appears as the “preferred name”—i.e., the name used to
construct a switching path—when you use the Path Editor?

An example of this is shown below. Here, a node has several possible na
+15, DC Supply +, PS_MUX:2, and MUX3:C2-HL. The preferred
name, +15, probably is the most meaningful because it describes a maj
path rather than an individual node somewhere along the path.

Alternate
names

Preferred
name
164

Working with Switching Topology
Defining the Switching Topology

est”
 each

in
ys
Part of the value you can add when defining topology is to ensure the “b
name (the name that makes the most sense for your circumstances) for
feature in the topology will appear as the preferred name seen by test
developers when they define switching paths.

How Do I Specify the Preferred Name for a Node?

You can specify the preferred name for a node by defining the topology
accordance with the rules the Switching Path Editor uses when it displa
the preferred node name. In order of precedence, you should:

Do this . . . Because . . .

When a node is referenced in
more than one topology layer,
use the preferred name in the
layer that has precedence.

The order for choosing preferred
names is UUT layer before fixture layer
before system layer.

When a node is associated with
a series of aliases—i.e., one
alias is aliased to another
alias—in the same topology
layer, give the preferred name to
the first alias in the series.

Within a single layer of topology, the
preferred alias in a series of aliases is
the first in the series. For example, if
alias1 is aliased to alias2 that is
aliased to alias3, the preferred name
is alias1.

When a node is associated with
both a wire and an alias in the
same topology layer, give the
preferred name to the alias.

Within a single layer of the topology, an
alias associated with a node is
preferred over a wire associated with
the same node.

When a node is associated with
multiple aliases (but no wires) in
the same topology layer, do
whatever you like.

Within a single layer of the topology
when multiple aliases exist, the alias
chosen will be the last one entered
when defining the topology. Because
this method tends to be unpredictable,
you should not rely upon it.
 165

Working with Switching Topology
Defining the Switching Topology

s

itor

f
Defining the System Layer

Continuing with the example begun earlier, you could use the Switching
Topology Editor to define the following for the system layer of topology:

Modules:
InstMatrix
PinCard1

Wires:
“ABus1” connects InstMatrix:ABus1 to PinCard1:ABus1
“ABus2” connects InstMatrix:ABus2 to PinCard1:ABus2

These wires are necessary because they interconnect switching module
whose topology is known to HP TestExec SL. The topology is known
because each module's characteristics are declared in its corresponding
hardware handler software (described later). Because each module's
topology has been modeled for HP TestExec SL, the Switching Path Ed
can control switching elements in it via switching actions in tests.

Using the Switching Topology Editor to specify topology, the definition o
the first wire shown above might look like this:
166

Working with Switching Topology
Defining the Switching Topology

c
Aliases:
InstMatrix:Instr1 in the system layer aliased as DVM_hi in the

system layer
InstMatrix:Instr2 in the system layer aliased as DVM_lo in the

system layer
PinCard1:Col1 in the system layer aliased as 1A-1 in the system

layer
PinCard1:Col2 in the system layer aliased as 1A-2 in the system

layer
PinCard1:Col3 in the system layer aliased as 1A-3 in the system

layer
PinCard1:Col4 in the system layer aliased as 1A-4 in the system

layer

Aliases were used here instead of wires because there are no switchable
connections. For example, the existence of the cable that connects
InstMatrix with the instrument is a given, as is the wiring that connects
the columns of relays on PinCard1 with the mass interconnect. If there is
no switchable connection to control, it is simplest to use an alias to specify
various points along the path.

The benefit of all this work becomes more apparent when you consider how
these definitions can simplify the way you specify connections with them.
Suppose you want to make a connection between the high terminal on the
DVM and a pin on the mass interconnect. Given the definitions of wires and
aliases shown above, it could be done as simply as this:

[DVM_hi ABus1 1A-2]

Note This convention of enclosing the path in brackets and having adjacent nodes
separated by spaces is the default used in the Switching Path Editor. To
avoid confusion when using the Switching Path Editor, we recommend that
you do not use spaces or brackets ([]) when naming features in the topology.

An optional Node Separator entry in the [Switching] section of
HP TestExec SL’s initialization file, “<HP TestExec SL
home\bin\tstexcsl.ini”, lets you specify which character appears as the
separator between adjacent nodes for a given installation of HP TestExe
SL. For example, Node Separator = | defines a vertical bar as the
 167

Working with Switching Topology
Defining the Switching Topology
separator. The separator is not saved with testplans, so if you move a testplan
from one test system to another the separator may change.

This describes a connection from one terminal on the DVM, through the
relay at the intersection of InstMatrix:Instr1 and
InstMatrix:ABus1, across the ABus connecting
InstMatrix:ABus1 and PinCard1:ABus1, through the relay at the
intersection of PinCard1:ABus1 and PinCard1:Col2, and through
the wire that connects PinCard1:Col2 to pin 1A-2 on the mass
interconnect. Notice how much more complicated the actual path is than the
notation needed to describe it using wires and aliases.

Defining the Fixture Layer

The fixture layer for the previous example might look like this:

Wires:
conn1-1 in the fixture layer connected to 1A-1 in the system layer
conn1-1 in the fixture layer connected to 1A-2 in the system layer
conn1-2 in the fixture layer connected to 1A-3 in the system layer
conn1-3 in the fixture layer connected to 1A-4 in the system layer

At first glance, you may wonder why these are not defined as aliases. After
all, there are no switchable paths in the fixture layer. Notice, however, that
both pins 1A-1 and 1A-2 of the mass interconnect are connected to pin 1 of
conn1. This means that two distinct paths exist to conn1-1, depending
upon which relay is closed on PinCard1. Thus, these should be defined as
individual wires and not simply aliases for the same point.

If desired, you also could use a combination of wires and aliases, like this:

Wires:
conn1-1 in the fixture layer connected to 1A-1 in the system layer
conn1-1 in the fixture layer connected to 1A-2 in the system layer

Aliases:
conn1-2 in the fixture layer aliased as 1A-3 in the system layer
conn1-3 in the fixture layer aliased as 1A-4 in the system layer
168

Working with Switching Topology
Defining the Switching Topology
This layer has no modules defined for it because there are no switching
modules in the fixture layer for this example. If your fixturing included some
form of electronics that was controlled via a hardware handler, you could
define it as a module in this layer.

Note We recommend that all references from the fixture layer to the system layer
specify pin identifiers on the mass interconnect and not specify aliases or
nodes other than pins on the mass interconnect in the system layer.
Following this suggestion lets you alter wiring in the system layer without
affecting the fixture.

Shown below is a useful variation on defining topology in the fixture layer
(but which will not be a part of the ongoing example). Suppose that instead
of using a relay matrix module to connect an external instrument, you
connect it to the test system via wiring in the fixture. In other words, when
you install the fixture used to test a specific UUT, that fixture contains a
connector to which the instrument is attached. The idea here is that by
connecting the external instrument to the test system through the mass
interconnect, you make the instrument accessible to any relay matrix cards
in the test system.
 169

Working with Switching Topology
Defining the Switching Topology

ss

ing is

ed

ent
How would you define this topology? Because the connection between the
external instrument—”DVM”—and the test system does not contain a
switchable path, you could specify the topology as:

Wires:
DVM_hi in the fixture layer (no connections to other layers)
DVM_lo in the fixture layer (no connections to other layers)

Aliases:
DVM_hi in the fixture layer aliased as 1-2 in the system layer
DVM_lo in the fixture layer aliased as 1-1 in the system layer

Defining wires without connections and aliasing them to pins on the ma
interconnect makes them equivalent. Thus, a reference to DVM_lo actually
means pin 1-1 on the mass interconnect in the system layer.

Defining the UUT Layer

Continuing the example, the topology definition for the UUT layer might
look like this:

Aliases:
conn1-1 in the fixture layer aliased as CPU_in in the UUT layer
conn1-2 in the fixture layer aliased as CPU_gnd in the UUT layer
conn1-3 in the fixture layer aliased as CPU_out in the UUT layer

These are all aliases because there is no switchable path; i.e., the alias
being done simply for the convenience of specifying CPU_in when using
the Switching Path Editor instead of trying to remember what is connect
to which pin on conn1 or to pins on the UUT.

Notice how the aliases are used to alias items in one topology layer with
items in another layer. This was necessary because connector conn1 is the
physical interface between the system and UUT layers.

This layer has no modules defined for it because there are no switching
modules in the UUT layer for this example. It has no wires defined for it
because there are no adjacent nodes—i.e., nodes with a switching elem
between them—between the fixture and the UUT.
170

Working with Switching Topology
Defining the Switching Topology

 of
Given the topology defined in all three layers, when creating a test you could
use the Path Editor to define a connection between the low terminal on the
DVM and ground on the CPU as:

[DVM_lo ABus1 CPU_gnd]

An example of this is shown below.

Using the Switching Topology Editor

To Create a Topology Layer

Use the Switching Topology Editor’s graphical tools to create a topology
layer.

1. Click in the toolbar or choose File | New in the menu bar.

2. Choose “Topology Layer”.

3. Choose the OK button.

4. Use the Switching Topology Editor Options box to specify which type
topology layer to create.

5. Choose the OK button.
 171

Working with Switching Topology
Defining the Switching Topology
6. When the Topology Layer window appears, use it to define the topology
for the layer.

7. (optional) If you wish to include summary information about the
topology layer, do the following:

a. Choose File | Revision Information in the menu bar.

b. Use the Topology Information box to enter summary information in
the appropriate fields.

Tip: For Current Revision, use the Major number to denote large
changes to the topology layer, such as adding a number of aliases,
wires or modules. Use the Minor number to denote small changes,
such as defect fixes or minor enhancements.

c. Choose the OK button to close the dialog box.

8. Choose File | Save As in the menu bar.

9. Specify a name for the file in which the layer is saved.

Tip: The names of files for topology layers must have a “.ust”
extension—e.g., “system.ust”.

10.Choose the OK button to save the file.

Using Aliases

To Add an Alias

Do the following in the Topology Layer window:

1. Click the Aliases folder in the list area (left pane).

2. Use the editor (right pane) to specify the information for the alias.
172

Working with Switching Topology
Defining the Switching Topology
The information you must specify for an alias includes:

3. Choose the Add button.

To Modify an Alias

1. In the Topology Layer window, click to open the Aliases folder in the list
area (left pane) if it is not already open.

2. Click the alias you wish to modify.

Tip: You can use the list of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Use the editor (right pane) to modify the information for the existing
alias.

4. Choose the Update button.

Name The name of the alias.

Note: We recommend that you do not use spaces
or brackets ([]) in names because that makes
switching paths more difficult to read.

Description A description of the alias.

Keywords One or more keywords, separated by commas,
that aid users when searching for this alias among
all the possible aliases. Keywords are used by the
Filter feature.

Reference Node An existing name that specifies a node in a
topology layer.

Note: Click the arrow to the right of Filter to
invoke a list of keywords that restrict the search
criteria in the Reference Node list.

Reference Layer The topology layer that contains the reference
node.
 173

Working with Switching Topology
Defining the Switching Topology
To Delete an Alias

1. In the Topology Layer window, click to open the Aliases folder in the list
area (left pane) if it is not already open.

2. Click the alias you wish to delete.

3. Do either of the following:

• Press the Del key.

- or -

• Choose Edit | Delete in the menu bar.

4. Choose the Update button.

Using Wires

To Add a Wire

Do the following in the Topology Layer window:

1. Click the Wires folder in the list area (left pane).

2. Use the editor (right pane) to specify the information for the wire.

The information you must specify for a wire includes:

Name The name of the wire.

We recommend that you do not use spaces or
brackets ([]) in names because that makes
switching paths more difficult to read.

Description A description of the wire.

Keywords One or more keywords, separated by commas,
that aid users when searching for this wire
among all the possible wires. Keywords are used
by the Filter feature.
174

Working with Switching Topology
Defining the Switching Topology
3. Choose the Add button.

To Modify a Wire

1. In the Topology Layer window, click to open the Wires folder in the list
area (left pane) if it is not already open.

2. Click the wire you wish to modify.

Tip: You can use the list of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Use the editor (right pane) to modify the information for the existing
wire.

4. Choose the Update button.

Connections One or more nodes to which the wire is
electrically connected.You can click:

New Conn—add a new connection to the list.

Delete Conn—remove the selected connection
from the list.

Move Up—promote the position of the selected
connection in the list.

Move Down—demote the position of the
selected connection in the list.

Reference Node An existing name that specifies a node in a
topology layer. Note: Click the arrow to the right
of Filter to invoke a list of keywords that restrict
the search criteria in the Reference Node list.

Reference Layer The topology layer that contains the reference
node.
 175

Working with Switching Topology
Defining the Switching Topology

me
 or

t.

k:
To Delete a Wire

1. In the Topology Layer window, click to open the Wires folder in the list
area (left pane) if it is not already open.

2. Click the wire you wish to delete.

3. Do either of the following:

• Press the Del key.

- or -

• Choose Edit | Delete in the menu bar.

4. Choose the Update button.

Using Modules

To Add a Module

Do the following in the Topology Layer window:

1. Click the Modules folder in the list area (left pane).

2. In the editor (right pane), click the Library field and either type the na
of the library file that contains the module's instrument driver/handler
use the Browse button to find the correct file.

3. If you are using a VXIplug&play driver, enter the Prefix (described
below) that identifies the instrument.

4. Choose the Add button to load the parameter block for the instrumen

5. Do the following for each parameter in the list under Parameter Bloc

a. Select the parameter.

b. Choose the Edit button.

c. Specify the information to be passed in the parameter.
176

Working with Switching Topology
Defining the Switching Topology
6. Enter the remaining information for the module (described below).

7. Choose the Update button.

The information you must specify for a module includes:

To Modify a Module

1. In the Topology Layer window, click to open the Modules folder in the
list area (left pane) if it is not already open.

2. Click the module you wish to modify.

Name A unique name for the module.

We recommend that you do not use spaces or
brackets ([]) in names because that makes switching
paths more difficult to read.

Disable Enable this box to have the Test Executive ignore the
module, such as when you remove it for calibration.

Description A description of the module.

Prefix An identifier that is generally used with
VXIplug&play instruments to identify the type of
instrument. Enter the name of the instrument as it
appears in calls to the VXIplug&play driver; e.g.,
calls to HP663x2-series instruments begin with
“hp663x2” (as in “hp663x2_init”) so that is what you
should enter.

Library The name of the library (DLL) that contains the
hardware handler for the module. In the case of a
VXIplug&play instrument, specify the name of the
DLL in which the VXIplug&play driver for the
instrument resides.

Parameter block A list of parameters passed to the module in its
parameter block. If the DLL for the module is not
found, the list will be empty.
 177

Working with Switching Topology
Defining the Switching Topology

ules
ify

 or
3. Use the editor (right pane) to modify the information for the existing
module.

4. Choose the Update button.

To Delete a Module

1. In the Topology Layer window, click to open the Modules folder in the
list area (left pane) if it is not already open.

2. Click the module you wish to delete.

3. Do either of the following:

• Press the Del key.

- or -

• Choose Edit | Delete in the menu bar.

4. Choose the Update button.

Duplicating an Alias, Wire, or Module

Instead of specifying the characteristics of similar aliases, wires, or mod
multiple times, you can copy an existing item and then rename it or mod
its characteristics.

1. With a switching topology layer loaded, select an existing alias, wire,
module in the left pane (list area) of the Switching Topology Editor.

2. Choose Edit | Duplicate in HP TestExec SL's menu bar.

The duplicate entry will appear below the existing entry.
178

5

Working with Libraries, Datalogging,
Symbol Tables, & Auditing
This chapter describes how to use libraries of actions and tests to promote code
reusability, datalogging to collect data during testing, symbol tables to store
global variables, and auditing features to track software revisions.

For related overview topics, see Chapter 3 in the Getting Started book.
179

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

ve

en

 for

 list
d try

ture

g
Using Test & Action Libraries
For an overview of test and action libraries, see “About Test & Action
Libraries” in Chapter 3 of the Getting Started book.

How Keywords Simplify Finding Items in Libraries

When you save an action definition or a test definition in a library, you ha
the option of specifying one or more “keywords” with the definition. A
keyword is an identifier used to restrict the number of matches found wh
searching for a specific item. Keywords often describe the item; for
example, suitable keywords for an action might be “trigger” or “range” to
identify what the action does or how it is used. Once you have searched
items whose keywords seem appropriate, you can inspect the resultant
and choose the correct item from it. Or, you can set up a new search an
again.

Because the number of actions you create can grow quite large, when
working with actions (as opposed to tests) you can use an additional fea
called “master keywords.” Master keywords are keywords stored in an
editable predefined list, which lets you quickly choose a keyword when
creating actions. A major benefit of master keywords is that you can
standardize the list for consistency when finding actions in libraries.

Having meaningful keywords assigned to items in libraries lets you use
HP TestExec SL’s browsing tools to find items quickly. Although specifyin
keywords requires slightly more effort initially, over time you will benefit
from enhanced code reuse.

Searching for Items in Libraries

Note Before you can search libraries, you must set up their search paths, as
described under “Specifying the Search Path for Libraries.”
180

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries
Searching for Actions in a Library

HP TestExec SL provides two ways to search for actions to insert into tests.
The first, which is on the Step-byStep Search tab and shown below, uses
multiple keywords and provides step-by-step guidance, which makes it
useful for beginners.

The second search method, which is on the Quick Search tab and shown
next, uses a single keyword and can be faster for experienced users.

Note The name of the action searched for is the name the action was given when it
was created with the Action Definition Editor, which is not necessarily the
same as the name of the file in which the action definition resides.
 181

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries
Searching for Tests in a Library

A common task when creating testplans is to search for tests to use in them.
The search mechanism used to search for a saved test definition so you can
insert it into a testplan is shown below.

The general procedure for doing a search for a test is shown below.

Doing
the

search

Results
of the
search

1 Select
keywords

2 Add them
to the list

3 Do the
search
182

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

arch

elp

ly as
find

ies

and
he

tion

ir
If desired, you also can:

• Choose the Remove button to remove a selected keyword from the se
list.

• Choose the Clear button to remove all keywords from the search list.

Strategies for Searching Libraries

Built into the Test Executive's graphical tools are several features that h
you search the contents of libraries for a specific routine. Your general
strategy when searching should be to reduce the list of matches as quick
possible, until only a few potential items of interest must be browsed to
the desired one.

To quickly find the item of interest, you can:

• Limit the list of library directories of each type to be searched.

By restricting the list of directories to those most likely to contain entr
useful for the test under development, you can eliminate many
unnecessary entries before beginning the search.

• Use keywords to narrow the search.

Select one or more keywords from those known to be in the entries,
only library entries with all the selected keywords will be displayed in t
list of matches.

• Type the first few characters of the name of the desired entry to posi
the list of entries to the appropriate part of the alphabetized list.

The features used to search libraries work best when the libraries are
carefully defined and organized. Where possible, do the following:

• Organize library directories such that the entries in them are logically
related and likely to be needed in similar testing situations.

• Be sure that the names of libraries and the entries in them reflect the
contents.
 183

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

nd

nd
ls:
• Use meaningful keywords when describing the entries in libraries.

• Provide related entries with similar prefixes on their names (which
improves HP TestExec SL's ability to sort by name).

• Use HP TestExec SL's Action Libraries box or Test Libraries box to fi
whichever kind of routine you need.

Specifying the Search Path for Libraries

HP TestExec SL lets you specify the search paths for action definitions,
dynamic link libraries (DLLs), HP VEE libraries, instrument drivers,
National Instruments LabVIEW libraries, symbol tables, test definitions, a
layers in the switching topology. You can specify these paths at two leve

Testplan-specific Paths that are specific to whichever testplan currently
is loaded, and override paths specified at the
System-wide level.

System-wide Default paths that apply unless they are overridden at
the Testplan-specific level. If you create a new
testplan and do not specify specific paths for it, these
defaults will be used.
184

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

rch

tion
In either case, you use a dialog box similar to the one shown below.

Note Search paths are searched in the order shown in the lists under
Testplan-specific and System-wide. This means that if your testplan uses a
specific DLL, and multiple instances of that DLL exist on your test system,
only the first instance of the DLL to be found will be used.

Given the above, modifying the order in which the paths are searched
potentially influences which items are found. You can use the Move Up and
Move Down buttons or “drag and drop” with the mouse to reorder the sea
paths in the lists.

To Specify System-Wide Search Paths for Libraries

1. With no testplan loaded, choose Options | System Options in the menu
bar.

2. In the list to the right of Search paths for:, choose which kind of
system-wide search path you wish to specify; i.e., a search path for ac
definitions, dynamic link libraries, etc.

3. Choose the Insert button.
 185

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries
4. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

5. Choose the OK button to save the new path in the list under
System-wide.

To Specify Testplan-Specific Search Paths for Libraries

1. With a testplan loaded, click in the toolbar or choose
View | Testplan Options in the menu bar.

2. In the Options box, choose the Search Paths tab.

3. Click to select an insertion point in the list of search paths under
Testplan-specific.

Note If you click in the list of System-wide search paths, you also can specify
those here. Be aware, though, that changes made here become the new
system defaults. Use whichever method you prefer.

4. Choose the Insert button.

5. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

6. Choose the OK button to save the new path in the list under
Testplan-specific.

To Remove a Path from the List of Search Paths

1. Click in the toolbar or choose View | Testplan Options in the menu
bar.

2. In the Options box, choose the Search Paths tab.
186

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries
3. In either of the lists of search paths, click the search path to be deleted.

4. Choose the Delete button.

5. Choose the OK button.

Using Search Paths to Improve Testplan Portability

Having two levels of search paths, testplan-specific and system-wide as
described above, is especially useful when testplans must be transportable
across test systems. For example, if you specify only system-wide search
paths, a testplan moved from one system to another will automatically use
the default search paths for the new system. On the other hand, specifying
testplan-specific search paths lets you override the defaults as needed, so
you know exactly which files a given testplan will use.
 187

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

 the
,

be
Using Datalogging
This section discusses datalogging options, disabling datalogging for
individual tests, using datalogging with Q-STATS programs, datalogging
files and their formats, and how to change between datalogging formats.

What Happens During Datalogging?

Datalogging automatically collects data about tests that have pass/fail limits
specified for them when a testplan runs. Subsequent study of this data can
help you improve the testing and manufacturing process and track the testing
done on a particular UUT.

The system writes a new file of datalogging information each time a testplan
or a loop in a testplan runs. The system automatically names each file with a
unique hexadecimal name derived from the system date and time plus an
extension of “.xml” or “.log” depending upon the format chosen for it.

The flow of data is shown below. First, data acquired during testing is
formatted using a definition for internal data, and stored internally. Next,
internally stored log data is reformatted using a definition for output data
and saved in an external data file for subsequent analysis.

The diagram above also shows an optional path by which log data can
sent to an operator interface for post-processing. To simplify this,
HP TestExec SL provides an ActiveX™ datalogging control for use in

HP TestExec SL

Log data
file

"xx.xml"
or

"xx.log"

Processing
of log data

Testplan

Testing
activities

Data acquired
during testing

Internal
log data
storage

Formatter for
log data output

Definition for how
data is formatted

Operator
Interface
188

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
operator interfaces written in Visual Basic; see Chapter 3 in the Customizing
HP TestExec SL book.

What is the Behavior & Format for Logged Data?

Datalogging can have the following behaviors:

The choice of behavior determines the names of the log records but not the
format of the data in the fields inside them.

Note If desired, you can modify the records and fields that appear in datalogging
files. See Chapter 3 in the Customizing HP TestExec SL book.

For any given behavior, you have a choice of formats that determine the
presentation of the data. These are:

TxSL Log records conform to a proprietary log record schema used
by HP TestExec SL. This is the default behavior and the one
recommended for general use.

HP 3070 Log records conform to a subset of the records produced by a
HP 3070-family board test system. This means you can use
Derby Associates Q-STATS II or HP Pushbutton Q-STATS to
do statistical analysis of log data.

Spreadsheet Datalogging files are written with each record on a
separate line and the fields separated by commas. This
format, which is readable by most spreadsheet or
database programs, lets you develop your own methods
for analyzing log data with the functions available in a
spreadsheet.

XML Datalogging files are written in XML (eXtensible Markup
Language) format. Because XML is a standard for
describing data, the use of XML lets you use commercially
available tools to view or process datalogging files.

HP 3070 Datalogging files are written in the format used by the
HP 3070 family of board test systems.
 189

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
Controlling How Datalogging Works

To Set the Datalogging Options for an Entire Testplan

1. Click in the toolbar or choose View | Testplan Options in the menu
bar.

2. When the Testplan Options box appears, choose its Reporting tab.

3. Choose the desired options.

The global datalogging options for a testplan are:

Enabled When this box is checked, datalogging is enabled for
the current testplan, and datalogging is disabled when
the box is unchecked.

Log Report
Information

When this box is checked, any messages that appear
in the Report window will be included in the
datalogging log file.
190

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
4. Choose the OK button.

To Change the Datalogging Options for an Individual Test

Options on the Reporting tab of the Testplan Options box (View | Testplan
Options) let you specify the global behavior of datalogging across all of the
tests in a testplan. As described below, you can also change some options for
individual tests in a testplan.

1. Click a test of interest in the left pane of the Testplan Editor window.

Log Level Determines how much and which kind of data is
collected during datalogging, as follows.

All—Logs a header for each testplan that was
executed, plus information about how its tests passed
or failed.

None—Logs a header for each testplan that was
executed, but does not identify whether its tests
passed or failed.

Failures—Logs a header for each testplan that
failed, plus information about how its tests failed.

Sampled—Logs a header for each testplan that was
executed. Logs information for all tests that fail. Also,
logs information for a specified percentage of passing
tests.

Sample rate %—Sets the percentage of passing
tests to be sampled when the testplan is run.

Log Directory Specifies the directory that will hold the datalogging
files. (By default, log data is stored in directory
“\logdir”.) If the system cannot access the indicated
directory, log files will be temporarily placed in the
directory specified by the system variable TMP.
(Usually this is the “\temp” directory.) The system will
attempt to move the log files to the current log directory
each time a testplan runs.
 191

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
2. Choose the Options tab in the right pane of the Testplan Editor window.

3. Choose the desired options for the test.

The datalogging options for individual tests are:

4. Choose the OK button.

To Select the Datalogging Behavior and Format

You can switch among the various datalogging behaviors and formats
(described earlier under “What is the Behavior and Format for Logged
Data?”) by editing the HP TestExec SL initialization file, as follows.

Generate
unique names
for datalogging
when looping

Check this box and the selected test’s data will be
logged under a unique name each time the test is

executed inside a loop (such as For...Next).a

a. Unique names are generated in log data by appending a unique integer
onto the name of the test; e.g., “Test1”, “Test2”.

Pass/Fail only
affects ‘On Fail
Branch To’

Check this box to disable datalogging for the
selected test.

Be aware that this option does more than turn off
datalogging for an individual test. It also disables
any pass/fail messages normally sent to the Report
window, cancels any effect of the test on global
pass/fail information, and causes statement tracking
to be skipped for the test. However, the “On Fail
Branch To” feature still works.

Override the
Test Name for
Datalogging

If you want to have the selected test logged under a
different name, check this box and specify the new
name in the data entry field to the right of New
Test Name for datalogging:.
192

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

h

vide
 via
ith

bout

nly

of

1. Use a text editor, such a WordPad in its text mode, to open file
“<HP TestExec SL home>\bin\tstexcsl.ini”.

2. Locate the [Data Log] section in the initialization file and specify whic
set of behavior and format files to use. (The [Data Log] section has
comments that describe how to do this.)

3. Save the modified inialization file and exit the text editor.

For more information about datalogging formats and customizing
datalogging, see Chapter 3 in the Customizing HP TestExec SL book.

Using Datalogging with a Spreadsheet

Because they are a familiar tool in the business world, spreadsheets pro
a useful and straightforward way to examine or manipulate data acquired
datalogging. The following topics describe how to use datalogging files w
a spreadsheet.

To Configure Datalogging for Use With a Spreadsheet

Note If you need more information about the log records described below or a
using the Datalogging Configuration Editor, see the online help for the
Datalogging Configuration Editor.

The basic approach to using datalogging with a spreadsheet is to use o
two types of records for datalogging information that appears in the

spreadsheet1. The first is a LogBatch record, only one of which will be
produced, that contains a row of titles assigned to columns in the
spreadsheet. The second is a LogLimit record that contains information
about the test’s pass/fail status and its limits. Because N LogLimit records
are produced—one for each execution of a limit checker—the contents
each LogLimit record populate one line in the spreadsheet.

1. Use the Start menu in Windows to run the Datalogging Configuration
Editor.

1. Other types of records are present, but they contain no fields.
 193

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

ar.

in

ur

hen
ou
re the

as
akes
2. Choose File | Open in the Datalogging Configuration Editor’s menu b

3. Specify the record and field definition files shown below, which conta
predefined definitions you may be able to use as-is.

4. Choose the Open button.

5. If the fields specified to appear in the LogLimit record do not meet yo
needs, specify which fields you want in that record. The top-to-bottom
order in which they appear in the editor is the order in which they will
appear in columns in the spreadsheet.

You now have the option of specifying different headers, trailers, and
separators for the data sent to the spreadsheet. The following are true w
you use the recommended record and field definition files or whenever y
choose the AutoCreate Headers, Trailers and Separators button to resto
headers, trailers, and separators to their default values for spreadsheet
compatibility.

• The trailer for the LogLimit record is a line feed, and the separator
between items is a comma. This results in fields separated by comm
and instances of the LogTest record separated by line feeds, which m
the format compatible with a spreadsheet.

• The header created for the LogBatch record is a comma-separated,
quoted, ordered list of field names from the LogTest record. This
provides the heading for columns in the spreadsheet.
194

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

cified

es

der
• All other records headers, trailers and separators are empty strings.

6. Do the following if you wish to modify the headers, trailers, and
separators:

a. Select a record in the left pane of the editor.

b. Choose the Edit Record Definitions button.

c. Use the drop-down list adjacent to Record Name to choose the
LogBatch or LogLimit records, and then modify their headers,
trailers, and separators as desired.

Suppose you want to make the field separator a tab. Tabs are spe
in headers, trailers and separators by \t. Type two characters: a
backslash followed by “t”. Similarly, you can specify a new line by
entering \n.

d. Choose the Done button.

7. Save the results.

You have two choices when saving modified files. First, you can use
File | Save to resave them under their original names, which overwrit

the original files1. Second, you can use File | Save As to save them un

alternate names, which preserves the original files2.

8. Choose File | Exit to close the Datalogging Configuration Editor.

1. If you installed HP TestExec SL with the Custom option and chose to install
backup copies of the configuration files, you can always find copies of the
original files in directory “<HP TestExec SL home>\DefaultConfiguration”.

2. If you change the names of the files, edit the [Data Log] section of file
“<HP TestExec SL home>\bin\tstexcsl.ini” so it specifies the new files.
 195

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

d
 in a

 row
What’s Inside a Datalogging File Formatted for Spreadsheets?

A sample of the datalogging file that HP TestExec SL generates for use with
spreadsheets—i.e., when File Type is set to “Spreadsheet”—is shown

below1.

"SerialNumber","TestplanStartTime","TestplanNameNoSuffix","TestName",
"TestJudgment","LimitJudgment","LimitLastMeasuredValue","LimitHighLim
it","LimitLowLimit"
123,990125105834,5Failures,NewTest1,1,1,-1,1,1
123,990125105834,5Failures,NewTest2,1,1,-2,2,2
123,990125105834,5Failures,NewTest3,1,1,-3,3,3
123,990125105834,5Failures,NewTest4,1,1,-4,4,4
123,990125105834,5Failures,NewTest5,1,1,-5,5,5

The first row contains headings for the columns in which items in

subsequent rows appear2. Each subsequent row contains the results for a
single test. For example, in the second row the value of “TestName” is
“NewTest2”, the value of LimitHighLimit is “2”, etc.

How Does the Data Appear in a Spreadsheet?

When loaded into a spreadsheet as comma-delimited data, the rows an
columns arrange themselves into a spreadsheet’s representation of data
grid, as shown in the excerpt below.

Notice how each column has a heading that identifies its contents. Each
that follows the row of headers contains the results from a single test.

1. The first three lines are a single row wrapped as-is because the row of data is
too long to fit on this page.

2. The names of columns correspond to names in the datalogging schema
described in the online help for the Datalogging Configuration Editor.
196

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

et
d

al

e if
ting
Why You May Need to Reformat the Data

Notice how the values of “TestplanStartTime” in the example above are
formatted in scientific notation. When importing the data, the spreadshe
attempted to format this value, which is derived from the system date an
time. However, the value was formatted incorrectly because it is in a
non-standard format that is unknown to the spreadsheet.

Reformatting the cells in which values for “TestplanStartTime” appear
returns the data to its original representation in the datalogging file. The
example below shows those cells reformatted as numbers without decim
places.

This example shows how you may need to reformat the data from
datalogging files into a format that suits your needs. This is especially tru
you customize datalogging to acquire data in formats unique to your tes
environment.

For more information about datalogging formats and customizing
datalogging, see Chapter 3 in the Customizing HP TestExec SL book.

To Import a Datalogging File into Microsoft Excel 97

Microsoft Excel 97’s Text Import Wizard simplifies the task of importing
datalogging files that contain comma-delimited data.

1. Choose File | Open in Excel’s menu bar.

2. Use the Open box to locate and open the datalogging file of interest.

Note You may need to set Files of type: to “All Files (*.*)” to make your
file visible.
 197

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

s

, as

t
w
3. In Step 1 of the Text Import Wizard, verify that the “Delimited” option i
chosen, as shown below.

4. Choose the Next button.

5. In Step 2 of the Text Import Wizard, the delimiter between data items
shown below. This example assumes you are using comma-delimited
data.

6. Choose the Next button.

7. If you have specific formatting needs addressed by Step 3 of the Tex
Import Wizard, which is shown below, select columns and specify ho
198

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
they should be formatted. This step also lets you specify columns to be
skipped instead of imported.

8. Choose the Finish button.

Using Datalogging with Q-STATS Programs

When you use HP 3070-style datalogging records, you can use Derby
Associates Q-STATS II or HP Pushbutton Q-STATS to do statistical
analyses of log data. This section describes how to pass limits to these
programs and restrictions on the names of tests.

To Set the Learning Feature & Pass Limits Information

You must pass limits information to the Q-STATS program to construct
accurate histograms from the data. To pass limits, you must run the testplan
once with the learning feature set to “on.” This setup tells the Q-STATS
program that you will pass data limits as well as values.

1. Choose Options | Testplan Options in the menu bar.

2. When the Testplan Options box appears, choose its Reporting tab.

3. Turn on datalogging by enabling the Enabled check box under
Datalogging.
 199

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

e

 tab.

e

t

p
ary

ed?

s

4. Set the datalogging level to “all” by enabling the All radio button to th
right of Log Level:.

5. Choose the Execution tab in the Testplan Options box.

6. Select Ignore All Failures under Sequencer Halting on the Execution

7. Run the testplan.

Note Any time you change the test limits, you must re-run the testplan with
learning set to “on” as described above.

Restrictions on the Names of Tests

Q-STATS II and HP Pushbutton Q-STATS each impose restrictions on th
test names that you choose within HP TestExec SL:

• For HP Pushbutton Q-STATS, you must not use slashes (/ or \) in tes
names.

• For Q-STATS II, only the first 40 characters of the test name are
significant.

Managing Datalogging Files

If you set the datalogging level to “all”, HP TestExec SL can quickly fill u
the disk that contains the datalogging directory. See “Managing Tempor
Files” in Chapter 6 for more information.

Troubleshooting Problems with Datalogging

If datalogging fails to work as expected, consider the following:

• If there is no datalogging information, do you have datalogging enabl
See the description of the Enabled option under “To Set the
Datalogging Options for an Entire Testplan” earlier in this chapter.

• If there is no datalogging information, does your testplan include test
whose pass/fail limits are checked? Tests must be evaluated against
200

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

the

e

 the
pass/fail criteria to produce datalogging information. See “To Specify
Limits for a Test” in Chapter 2 of the Using HP TestExec SL book.

• If datalogging information is present but not what you need, are the
options for the log level set correctly; i.e., are you logging the right
information? See the description of the Log Level option under “To
Set the Datalogging Options for an Entire Testplan” earlier in this
chapter.

• If datalogging information is present but it does not contain report
information, do you have reporting enabled? See the description of th
Log Report Information option under “To Set the Datalogging
Options for an Entire Testplan” earlier in this chapter.

• Are you sending datalogging information to the wrong directory? See
description of the Log Directory option under “To Set the
Datalogging Options for an Entire Testplan” earlier in this chapter.
 201

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

ope

Using Symbol Tables

About Symbol Tables

Symbol tables contain data items (variables) called “symbols” whose sc
makes them available within a testplan. You typically access symbols by
referencing them from tests, actions, or flow control statements.

Symbols in this table... Have this scope

SequenceLocals Across all tests in a sequence; i.e., each
sequence has its own SequenceLocals symbol
table. Variables defined here can be used to
pass values between tests because the
variables are visible within a given sequence
throughout the testplan.

System Global to the testplan and all tests and actions
in all sequences. Contains predefined symbols
associated with the testing environment, such
as the user ID, test system ID, and serial
number of the UUT.

TestPlanGlobals Global to the testplan and all tests and actions
in all sequences. Variables defined here can
pass values anywhere within a testplan.

TestStepLocals Across all actions inside a test in a sequence;
i.e., each test has its own TestStepLocals
symbol table. Variables defined here can be
used to pass values between actions inside the
current test but not to actions in other tests.

TestStepParms Specific to a test in a sequence; i.e., each test
has its own TestStepParms symbol table.
Variables defined here contain parameters
passed to the test.

External (user-named) Global to the testplan and all tests and actions
in all sequences.
202

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

ibed

 of
The hierarchy of symbol tables, and their scope, is shown graphically below.

Within the scope of testplans and tests, you can use HP TestExec SL’s
graphical tools to access symbol tables from the Test Executive
environment. For example, View | Symbol Tables lets you examine or
modify the contents of symbol tables. If you wish to interact with symbol
tables from actions, you must use the C Action Development API descr
in Chapter 2 of the Reference book.

Predefined Symbols in the System Symbol Table

The System symbol table contains the following predefined symbols, all
which allow read/write access. The values of some symbols are
automatically updated by HP TestExec SL, while others are simply

Testplan (Main Sequence)

Test1

.....
Actions

......

TestStepParms

TestStepLocals

Testn

.....
Actions

......

TestStepParms

TestStepLocals

... more tests ...

SequenceLocals

TestPlanGlobals System External...

Testplan (Main Sequence)

Test1

.....
Actions

......

TestStepParms

TestStepLocals

Testn

.....
Actions

......

TestStepParms

TestStepLocals

... more tests ...

SequenceLocals
 203

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables
placeholders reserved for your use; i.e., you must explicitly write values to
them.

FixtureID A string that contains a unique identifier for
whichever fixture (if any) the current testplan
uses to test the UUT. (placeholder)

ModuleType A string that contains the identifier of the type
of UUT. (placeholder)

OperatorName A string that contains the name of the current
login. (automatically updated)

RunCount An Int32 whose value contains how many
times the current testplan has been run since
it was loaded. It starts at 1 and increments by
1 each time. Choosing a different variant does
not affect its value. (automatically updated)

SerialNumber A string whose value contains the serial
number of the module currently being tested.
(placeholder)

TestInfoCode An Int32 whose value contains the code
number set by the user fail mechanism. Its
value is 0 if the test has not failed via the user
fail mechanism. (placeholder)

TestInfoString A string returned from the user fail
mechanism. (placeholder)

TestStationID A string that contains the identifier of a test
station if you have more than one.
(placeholder)

TestStatus An Int32 whose value contains the pass/fail
judgment for the most recent test. Its value is
-1 if the test had no limits checker, 0 if the test
passed, and N if the test failed. In the case of
a failure, N equals the number of failures. For
a scalar value that fails, N will be 1. For a
one-dimensional array that fails, N will be the
number of failing values in the array.
(automatically updated)
204

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

iding

ent

ol

ble
If desired, you can have actions in your tests examine or modify these values
as needed. For example, you could examine TestStatus to determine if a
test failed and then change the test’s parameters and rerun it before dec
that it ultimately fails. Or, you could examine the value of RunCount and
have a test execute the first time a testplan runs but not during subsequ
runs.

How Symbols Are Defined in Flow Control Statements

Be aware that symbols are defined “on the fly” when you use flow contr
statements. For example, specifying “For Counter = 1 to 5 Step 1”
automatically creates a symbol named Counter in the SequenceLocals
symbol table for the current sequence. As with symbols you define
explicitly, you can interact programmatically with these symbols.

Note If you delete a flow control statement for which a symbol was created
automatically, you must manually delete that symbol from the symbol ta
in which it resides.

UnhandledError A string array that contains the contents of the
exception stack if an exception was detected
while running a testplan. The array’s contents
are the exception strings that appear in the
Report window. (automatically updated)

UnhandledErrorSource A string that contains the name of the test that
was executing when the most recent
exception was detected. If no test was
executing, the value is a null string.
(automatically updated)
 205

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables
Programmatically Interacting with Symbols

The method used to examine or modify symbols depends upon where you
are when you access them.

To Examine the Symbols in a Symbol Table

1. With a testplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbol Tables box appears, click the name of the desired
symbol table in the list near Tables.

3. Browse the list of symbols and their characteristics that appears.

In... You can...

testplans Use a flow control statement to examine or modify the
value of a symbol and act upon it. The syntax for
accessing symbols from flow control statements is
<symbol table. symbol>. For example:

If System.RunCount = 1 Then
! Execute first time testplan runs
test MyTest

end if

tests/test groups Pass a parameter that references a symbol in a symbol
table; e.g., System.TestStatus. (The ampersand
to the left of the name of the parameter provides a
visual cue that the parameter references a symbol.)

actions Use the UtaTableRegFindData() API function to
return the value of a symbol in a symbol table.
206

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

r.

 list

 a
s
4. When you have finished using the Symbol Tables box, choose the Cancel
button.

To Add a Symbol to a Symbol Table

1. With a testplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbols Table box appears, click the name of the desired
symbol table in the list near Tables.

3. Do the following for each symbol you wish to add:

a. Choose the Add Symbol button.

b. Define the characteristics of the new symbol.

You can click a row under Value and choose the button to invoke
a separate editor for the symbol or expand the tree view of the
symbol’s characteristics and edit items directly.

4. Choose the OK button.

To Modify a Symbol in a Symbol Table

1. With a testplan loaded, choose View | Symbol Tables in the menu ba

2. When the Symbols Table box appears, click the desired symbol in the
under Symbols.

3. Modify the symbol’s characteristics.

You can click a row under Value and choose the button to invoke
separate editor for the symbol or expand the tree view of the symbol’
characteristics and edit items directly.

4. Choose the OK button.
 207

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables
To Delete a Symbol from a Symbol Table

1. With a testplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbols Tables box appears, click the symbol to be removed
from the list under Symbols.

3. Choose the Delete Symbol button.

4. Choose the OK button.

Using External Symbol Tables

External symbol tables are user-defined and named symbol tables stored in a
file external to the testplan. Each testplan can be associated with one or more
external symbol tables, and each external symbol table can be associated
with one or more testplans.

To Create an External Symbol Table

1. Choose File | New in the menu bar.

2. When prompted for which kind of document to create, choose Symbol
Table.

3. Choose the OK button.

4. Do the following for each symbol you wish to define in the external
symbol table:

a. Choose the Insert button.

b. Define the characteristics of the new symbol.

You can click a row under Value and choose the button to invoke
a separate editor for the symbol or expand the tree view of the
symbol’s characteristics and edit items directly.

5. Choose File | Save As in the menu bar.
208

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables
6. Specify the name of the file in which to store the external symbol table.

Note Although the name of the file and the name of the symbol table need not be
the same, naming them alike simplifies remembering their relationship later.

7. Choose the Save button.

To Link to an External Symbol Table

To make an external symbol table visible to a testplan, you must link or
associate it with the testplan. After you have linked an external symbol table
to a testplan, you can use its symbols the same way you use symbols in
internal symbol tables.

1. Choose View | Symbol Tables in the menu bar.

2. In the Symbol Tables box, choose the Link to External Symbol Table
button.

3. When prompted, specify the name of the external symbol table to be
associated with the testplan.

4. Choose the Open button.

5. Choose the OK button.

To Remove a Link to an External Symbol Table

1. Choose View | Symbol Tables in the menu bar.

2. In the Symbol Tables box, click the name of an external symbol table in
the list near Tables.

3. Choose the Remove Link to Symbol Table button.

4. Choose the OK button.
 209

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

are

ical
Using Auditing
HP TestExec SL’s auditing features let you document the history of softw
revisions as you work with the software. You can describe changes to
testplans, tests, actions, and topology information. Shown below is a typ
dialog box in which you can record revision information for a testplan,
action, or switching topology.
210

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

iting

,

g a
As shown below, the Document tab in the Test Editor window lets you
specify revision information for tests.

After you have entered revision information, you can view or print it the
same as you do other information associated with a testplan.

Some of the auditing features are customizable; see “Setting Up the Aud
Features” in Chapter 6.

To Document Testplans, Actions & Switching Topology

1. While editing a testplan, action definition, or switching topology layer
choose File | Revision Information in the menu bar.

2. Enter a description of the current revision of the testplan, action, or
switching topology.

Tip: Use the New Version button to create a new revision when editin
testplan.

3. Choose the OK button.
 211

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

Up

r
To Document Tests

1. In the right pane of the Testplan Editor window, choose the
Documentation tab.

2. In the data entry fields on the Documentation tab, enter a description of
the current revision of the test.

3. Click to the right of the drop-down list to specify the current status of the
test.

Note If you wish to customize the options that appear in this list, see “Setting
the Auditing Features” in Chapter 6.

4. Choose the Apply button to save the description.

Tip: If you change your mind, choose the Restore button to recall the
previous description.

To View or Print Auditing Information

1. With a testplan loaded, choose View | Listing | Audit in the menu bar.

2. If you wish to print the information, choose File | Print in the menu ba
while viewing the listing.
212

6

System Administration

This chapter provides information about configuring and administrating
HP TestExec SL, which includes setting system security.
213

System Administration
System Setup

 of

as

looks

 as
System Setup

Specifying the Location of the System Topology Layer

If you wish to use HP TestExec SL’s graphical features, such as the
Switching Path Editor, to control switching paths from tests, your test
system must have a system topology layer defined for it. The pathname
the file containing the system layer is listed in the [Switching] section of
HP TestExec SL’s initialization file, which is “<HP TestExec SL
home>\bin\tstexcsl.ini”, as shown below.

[Switching]
; System topology file.
; The entry contains the name of system topology file and/or path.
; The default path is the current working directory.
System Layer=$ROOT$\bin\system.ust

Use a text editor, such as WordPad in its text mode, to modify this path
needed.

For an overview of controlling switching and switching topology, see
Chapter 3 in the Getting Started book. For detailed information, see
Chapter 4 in this book.

Specifying the Default Variant for a New Testplan

An entry in the [Process] section of the “<HP TestExec SL
home>\bin\tstexcsl.ini” initialization file lets you specify which testplan
variant is used as the default when you create a new testplan. The entry
like this:

Default Variant=Normal

Use a text editor, such as WordPad in its text mode, to modify this entry
needed.
214

System Administration
System Setup

ke

Setting Up an Operator or Automation Interface

Overview

Your goal in setting up an operator interface is to have the operator interface
appear instead of the Test Executive environment used to develop testplans.
Automation interfaces are similar except that they also must automatically
log in to HP TestExec SL and load and run a testplan.

The methods for achieving these goals vary depending upon which language
was used to develop the operator/automation interface. Interfaces developed
in Visual C++ reside in a DLL that is called by HP TestExec SL, while
interfaces developed in Visual Basic are external programs that call
HP TestExec SL.

For information about creating an automation interface, see Chapter 1 in the
Customizing HP TestExec SL book.

Setting Up an Automation Interface to Start Automatically

Starting an Automation Interface Created in Visual Basic

All you need to do to start an automation interface created in Visual Basic is
run its executable file. Code in the automation interface handles tasks like
logging in to HP TestExec SL and loading and running a testplan.

Starting an Automation Interface Created in Visual C++

Starting an automation interface created in Visual C++ requires HP TestExec
SL to log in a user automatically and then load a custom user interface that
supports automation tasks. When setting up an automation interface, you
need to examine or edit entries in the [Process] and [Components] sections
of the “<HP TestExec SL home>\bin\tstexcsl.ini” initialization file.

The [Process] section of the initialization file contains entries that look li
this:

Automation=Yes
Automation User Name=<user name>

Setting Automation=Yes causes HP TestExec SL to use an automated
login sequence. The user name specified for Automation User Name
 215

System Administration
System Setup

s,

ing

 as

s

y

can
will be used during the automated login sequence. This name must belong to
only one group of users, and it must not have a password associated with it.

The [Components] section of the file has an entry that follows this format:

<group name>=<automation DLL>

For group name, specify the group to which the user name specified for
Automation User Name belongs. For automation DLL, specify the
name of the DLL that contains the code for your automation interface.

Suppose a login named AutomationUser had no password and was the
only member of a group called Automation. The automation-related
entries for it might look like this:

[Process]
Automation=Yes
Automation User Name=AutomationUser
[Component]
Automation=$ROOT$\bin\stdoper.dll

Use a text editor, such as WordPad in its text mode, to modify these entries
as needed.

For more information about specifying HP TestExec SL’s security feature
see “Controlling System Security.”

Setting Up Automatic Printing of Failure Tickets

If you implement a failure ticket printing scheme, you can add the follow
line to the [Process] section to have a failure ticket printed to the default
printer:

Auto Print Failure Report=Yes

Use a text editor, such as WordPad in its text mode, to modify this entry
needed.

Specifying the Polling Interval for Hardware Handlers

If you are using a hardware handler to monitor the status of hardware, a
described under “Monitoring the Status of Hardware” in Chapter 2 of the
Customizing HP TestExec SL book, you may want to specify how frequentl
HP TestExec SL calls the AdviseMonitor() function in hardware
handlers. By default, this function is called every 100 milliseconds. You
216

System Administration
System Setup

 as

t
alls

in

itor

e list.
change the interval for polling by adding an entry named Monitor Time
Slice to file “<HP TestExec SL home>\tstexcsl.ini” and specifying a
different value in microseconds, as shown below:

[Process]
Monitor Time Slice=500000

Use a text editor, such as WordPad in its text mode, to modify this value
needed.

Note The value of Monitor Time Slice affects the performance of your tes
system. The lower the value—i.e., the more frequently HP TestExec SL c
the AdviseMonitor() function in hardware handlers—the more time
your system spends polling instead of testing.

Setting Up the Auditing Features

If desired, you can modify the behavior of some aspects of HP TestExec
SL’s auditing features.

For general information about auditing features, see the auditing topics
Chapter 5.

Controlling the Appearance of the Status List

Entries in the “<HP TestExec SL home>\bin\tstexcsl.ini” file determine what
appears in the drop-down status list on the Document tab in the Test Ed
window. The default entries are:

[Customized Development Status]
Status1=Definition
Status2=Under Development
Status3=Under Testing
Status4=Broken
Status5=Released

You can change the status list’s contents by using a text editor, such as
WordPad in its text mode, to modify these entries. For example, you can
rename existing items and add or delete items to change the length of th
 217

System Administration
System Setup

o

ime

ered
Controlling the Operation of the Revision Editor

If desired, you can customize some features of the New Version box (shown
below) that appears when you use HP TestExec SL’s auditing features t
create a new version of a testplan.

You can:

• Optionally prevent system operators from modifying the testplan’s
revision history.

• Optionally have the version number incremented automatically each t
you create a new revision.

• Customize several labels associated with descriptive information ent
for revisions of the testplan.

Entries in the “<HP TestExec SL home>\bin\tstexcsl.ini” file determine the
behavior of the New Version box. The default entries are:

[Customized Revision Options]
Allow Operator Edit=TRUE
Automatically Increment Revision Number=TRUE
Audit Label=Spec. Number
User1 Label=Development Status
User2 Label=User Field 2
User3 Label=User Field 3
User4 Label=User Field 4
218

System Administration
System Setup
You can use a text editor, such as WordPad in its text mode, to modify these
entries, as described below.

When you enter text in the fields adjacent to the Audit Label and User1-4
Label in the New Version box, the labels and the contents of the fields
appear in the revision history information displayed in the Testplan Revision
Information box, as shown below. By customizing the labels, you can make
them meaningful for your testing environment.

This entry. . . Does this

Allow Operator Edit When set to FALSE, prevents operators from
modifying the revision history of a testplan.

Automatically Increment
Revision Number

When set to TRUE, automatically increments
the Version number each time new revision
information is entered.

Audit Label A label that will be associated with each new
revision that is created.

User1-4 Label Text associated with user-defined labels. This
text appears in the revision history for each
new version that is created.
 219

System Administration
Directories and Files
Directories and Files
This section lists standard directories, files, and file extensions. It also offers
suggestions for locating libraries and managing temporary files.

Standard Directories

HP TestExec SL has the following standard directories and files:

HP TestExec SL The default home directory for HP TestExec SL’s files (unless you
chose a different location when installing HP TestExec SL). This
directory contains as subdirectories all of the standard HP TestExec
SL directories listed below.

actions Contains the definitions for some predefined actions.

bin Contains the HP TestExec SL program and standard DLLs. Also
contains the standard initialization (“*.ini”) files used by HP TestExec
SL.

doc Can contain supplemental documentation.

DefaultConfiguration Contains default copies of various files, such as initialization files.

include Contains C header files needed by Visual C++ to build user-defined
actions.

lib Contains libraries needed by Visual C++ to build user-defined
actions.

opui Contains source code for the sample operator interface created in
Visual C++

samples Contains subdirectories that contain examples provided on an as-is
basis.
220

System Administration
Directories and Files
Standard File Extensions

Various aspects of HP TestExec SL have associated files that are denoted by
specific extensions. As noted below, some of these are registered file types
that you can open simply by clicking them in the Windows Explorer.

Testplans .tpa (For example, “testplan1.tpa”) Registered to
open with HP TestExec SL.

Test libraries .utd (For example, “arb2dmm.utd”.)

Switching
topology files

.ust (For example, “system.ust”, “myfix.ust”,
“myuut.ust”) Registered to open with HP TestExec
SL.

HP TestExec SL supports three topology layers:
system (one per test system), fixture (one per fixture
type), and UUT (one per UUT type). The system “ust”
file loads when HP TestExec SL starts, based on a
path in the “tstexcsl.ini” file. The fixture and UUT “.ust”
files (as specified under View | Switching Topology
Files) load with each testplan. The system “.ust” file
reloads at this time.

Actions .umd (For example, “measv.umd”) Registered to
open with HP TestExec SL.

Actions consist of a “.umd” definition file and an
associated file that contains the action code. The file
that contains action code can contain code for more
than one action.

External symbol
tables

.sym (For example, “MyTestplan.sym”) Registered to
open with HP TestExec SL if no previously installed
application used the “.sym” type.

Each testplan can have one or more external symbol
tables associated with it.

Initialization files .ini (For example, “tstexcsl.ini”.)

See “Initialization Files” below.
 221

System Administration
Directories and Files
Initialization Files

HP TestExec SL has the following initialization (“*.ini”) files:

tstexcsl.ini Contains paths to other files required by HP TestExec SL
and values for various system parameters. This file, which
is located in the “<HP TestExec SL home>\bin” directory,
contains comments that describe its contents.

HP TestExec SL finds this file by locating its path in file
“win.ini” (located in the “<Windows home>” directory) under
the heading “[HP TestExec SL]”. If “win.ini” does not have a
specific entry for “tstexcsl.ini”, HP TestExec SL looks in the
directory specified by the “windir” environment variable.

*def.ini Various files that define datalogging formats. The
Datalogging Configuration Editor provides a graphical
interface for manipulating these files without your having to
understand their contents.
222

System Administration
Directories and Files
Recommended Locations for Files

C actions
(during
development)

During development, keep action definitions (“*.umd”)
and simple testplans to exercise them (such as
“tryit.tpa”) in the same directory as the Visual C++
project used to create the action DLL
(“<action_name>.dll”).

C actions
(when ready for
general use)

Action definitions (“*.umd” files) belong in directories
with other logically related actions. The action DLL
(“<action_name>.dll”) belongs in a directory specified
in the PATH environment variable. See “Using Test &
Action Libraries” in Chapter 5.

Test libraries Standard test template (“*.utd”) files. You can choose
your own location and organization for these files.
See “Using Test & Action Libraries” in Chapter 5.

Testplans Standard testplan (“*.tpa”) files. You can choose your
own location and organization for these files. A good
practice is to place related testplans in the same
directory.

External symbol
tables

Files containing external symbol tables (“*.sym”)
belong in the directory containing the testplan with
which they are associated.

Switching
Topology files

Because the fixture and UUT topology layers
(“uut.ust” and “fixture.ust”) are also loaded with the
testplan, you should keep these files in the same
directory as the testplan.

The system topology file (“system.ust”) can be
located anywhere. HP TestExec SL finds this file via a
path specified in file “<HP TestExec SL
home>\tstexcsl.ini”.

utalib.vee For HP VEE users. Provides HP VEE functions for
passing parameters back and forth between
HP TestExec SL and HP VEE. You may wish to move
this library from the “<HP TestExec SL home>\lib”
directory to a directory of your choice (typically the
“lib” subdirectory of the “vee” installation directory).
 223

System Administration
Directories and Files

ear

ion
The following example illustrates a possible directory structure for
customized HP TestExec SL files. Note that the “bin” directory must app
in the list of search paths for DLLs so the system can find the DLL files
when executing them; see “Managing DLLs” for more information about
specifying the search path for DLLs.

custom\
bin\ (customized DLLs)

eec1.dll
abs4.dll
autoui.dll

actions\
eec1\

injpul.umd
abs4\

serialin.umd
projects\ (for action sources that you create)
testplan\
tests\

Managing DLLs

While DLLs make possible much of the technology found in
HP TestExec SL, they also can complicate the initial development of act

uta.llb For National Instruments LabVIEW users. Provides
functions for passing parameters back and forth
between HP TestExec SL and National Instruments
LabVIEW. You may wish to move this library from the
“<HP TestExec SL home>\lib” directory to a
subdirectory called “uta.lib” in the directory where
National Instruments LabVIEW is installed.

User files, DLLs
& directories

You should create your own directory structure for
any actions, DLLs, testplans, test libraries, and so on.
See the example below.

Note: If you place your own actions, DLLs, and such
in the directories created by HP TestExec SL, they
may be overwritten when you install new versions of
the software.
224

System Administration
Directories and Files

th a
ome
tiple
ng.

.

ull

code, particularly during the debugging phase. For example, it is easy to
attempt to execute—with adverse results—a DLL that is not matched wi
particular version of the HP TestExec SL software. It also is easy to bec
confused about exactly which DLL has been loaded when there are mul
copies of that DLL on a system, as frequently is the case when debuggi

How HP TestExec SL Searches for DLLs

HP TestExec SL has a specific way of looking for DLLs requested by an
application that is running. It searches for them in the order listed below

1. Use whichever DLL already is in memory.

2. If the name of the DLL is preceded by a fully qualified path, use the f
pathname for the search.

Example of a full pathname: "<drive>:\<dirname>\...\<filename.dll>"

3. If the name of the DLL is simply <filename> or <filename.dll>, search in
this order:

a. Search the list of paths specified for Dynamic Link Libraries in the
Search Paths tab in the Options box.
 225

System Administration
Directories and Files

d

 in
e
re

l the

d so

SL

more
em.
Testplan-specific paths are searched first, followed by System-wide
paths. Both are searched in the order in which the search paths appear
in their respective lists.

For more information about how to specify these search paths, see
“Specifying the Search Path for Libraries” in Chapter 5.

b. Search the directory that contains the “.exe” file that is executing.

If the pathname of the DLL includes a relative path—e.g.,
“\< filename.ext>” or “<dir>\<filename.ext>—the name of the DLL is
appended to the name of the directory containing the “.exe” file an
that becomes the pathname for the search. For example, if the
pathname of the DLL is “test\test.dll” and the “.exe” directory is
“c:\tstexcsl\bin”, the pathname for the search is
“c:\tstexcsl\bin\test\test.dll”. Or, if the pathname of the DLL is
“\test.dll” and the “.exe” directory is “c:\tstexcsl\bin”, the pathname
for the search is “c:\test.dll”.

Situations That Can Cause Problems With DLLs

If you use Visual C++ for debugging, it searches the current working
directory—i.e., the directory where the project is and the latest DLL is
stored—for the correct DLL to load. If the application—HP TestExec SL,
this case—changes the current working directory before that DLL can b
loaded, then either the wrong DLL will be loaded (if one exists somewhe
besides the project directory) or a “DLL not found” error will occur.

Because HP TestExec SL lets you specify a new working directory when
loading a testplan, and DLLs containing action code are not loaded unti
testplan is, action DLLs are susceptible to this problem. A temporary
workaround is to create a new testplan first, using just the action desire
that the DLL gets loaded, and then loading the real testplan to check the
action being debugged.

DLLs are not always unloaded from memory, especially if HP TestExec
terminates abnormally. Thus, if HP TestExec SL is run again the DLL in
memory will be used instead of the expected one. This can cause even
problems if the version in memory is out of date with the rest of the syst
226

System Administration
Directories and Files

d
s of

 to

the

lt
es.

t

t
ne

of

w it
DLLs must be consistent and compatible with the version of
HP TestExec SL that calls them. The best way to ensure this is to build the
DLL using the “include” and “lib” files for that version of HP TestExec SL
to be sure of compatibility. It is also important to make sure the expecte
DLL and the expected HP TestExec SL software really got run. Example
situations known to cause such problems include:

• Building an action DLL with one version of the HP TestExec SL
software and executing it with another. Crashes can result.

To prevent this, be sure that the Visual C++ “directories” option points
the correct version.

• Running an action DLL from C++ debug with the wrong version.

To prevent this, be sure that the Visual C++ “debug” option points to
right version.

• Running an action DLL with a HP TestExec SL version it was not bui
for. Subtle differences can cause unexpected results, including crash

To prevent this, be sure that the action DLL is being run by the correc
version of HP TestExec SL.

• Running an action DLL that is already loaded. While this may be wha
you want, if you have created a new DLL you must remove the old o
before the new will load. If the new DLL fails to behave as expected,
such as not stopping at breakpoints, this may be the cause.

Symptoms Associated with Loading the Wrong DLL

Among the symptoms you may see if the wrong DLL (or wrong version
HP TestExec SL) has been loaded are:

• Unexplained crashes of DLLs that previously worked.

• Breakpoints set in a new DLL are never reached even though you kno
has to be executing that code.
 227

System Administration
Directories and Files

ded

s”

ure

n
lan

. If
ust

y
• A new entry point into an action is not found even though you just ad
it to the DLL.

• The action does not do functions you just added to the DLL.

Minimizing the Problems with DLLs

Do the following to minimize the problems caused by DLLs:

• When switching to a new version of HP TestExec SL, make sure the
search path for DLLs includes it.

• Do not create too many copies of a DLL. The fewer the better.

• Before building a DLL for use in an action, be sure the C++ “directorie
entry has pointers to the Version's files for Libraries and for Include.

• Before starting a debug run of HP TestExec SL from Visual C++, be s
the “debug” option points to the correct version of “tstexcsl.exe”.

Note You can use the LoadLibrary() function in the Visual C++ environment
to load specific library files. See the Visual C++ documentation.

Managing Temporary Files

The most significant temporary files created by HP TestExec SL are the
datalogging files, which by default are stored in directory “\logdir” but ca
be specified in the datalogging options for each testplan (Options | Testp
Options | Reporting). Ideally, the application software that uses the
datalogging files automatically cleans up the temporary datalogging files
no such application exists or if it cannot automatically delete files, you m
manually delete datalogging files when you no longer need them.

Windows and Visual C++ sometimes create temporary (.tmp) files in a
“temp” directory. These files can also consume disk space, and you ma
need to delete them occasionally.
228

System Administration
Controlling System Security

ers”

oups.
ngs.
 the

erally

hat

 user

ps
oup
Controlling System Security
This section tells you how to modify HP TestExec SL’s security settings.
The security system controls access to program functions, based on “us
and “groups.” Users have log-in names and passwords and belong to gr
Access to program functions is based on the group to which a user belo
Users that belong to the same group have the same access privileges to
system.

Group privileges are based on access to resources. Resources are gen
tools, such as “Security” for using the security system or “SymVal” for
working with symbol tables.

After your HP TestExec SL system has been installed, we recommend t
you designate one person as the system administrator. The system
administrator should change the password for the system user, and,
optionally, add passwords to the operator, developer, and troubleshooter
groups.

Using the Default Security Settings

HP TestExec SL's default security settings give you security protection
adequate for many work environments. In the default settings, user grou
and user names are identical and passwords are not assigned to any gr
except the “system” group.
 229

System Administration
Controlling System Security
User Groups

The default user groups are as follows:

System Resources

The system resources to which user groups have access are as follows:

Group Access Privileges

The following table lists the specific access privileges to system resources
for each default user group. The column on the left side lists the system
resource in bold type and the access to that resource in plain type.

Operator An operator of a test system. Operators can select and
run predefined testplans via an operator interface
personality for the Test Executive, but they cannot
access the test development personality.

Supervisor A supervisor of test operators.

Developer A developer of testplans, actions, and switching topology
layers. A Developer can write and save testplans, action
definitions, and switching topology layers, and has full
access to the Test Executive’s test development
environment except for system administration functions.

Administrator This group has full access to all functions and is usually
assigned only to the system administrator.

Security Controls use of the security system.

Security Access Controls ability to modify the security system.

SymVal Controls use of values in symbol tables and
modification of parameter values.
230

System Administration
Controlling System Security
Customizing Security Settings

You can change security settings, such as:

• Assigning or changing passwords.

• Adding, deleting, or editing user and group privileges.

• Modifying access privileges for groups.

To Change a Password

1. Choose File | Security | Change Password in the menu bar.

System Resource
and Access

Group

Operator Supervisor Developer Administrator

Security
Read
Write
Edit User
Edit Group
New User
New Group
Set Access

x x x
x
x
x
x
x
x

Security Access
Modify Resources x

SymVal
Read
Write
Print
Secure
Print Value
Edit Value

x x

x

x

x
x
x
x
x
x

Revision
Edit
Add

x
x

 231

System Administration
Controlling System Security
2. Type the current password in the Old Password field.

3. Type the new password in the New Password field.

4. Retype the new password in the Confirm Password field.

5. Choose the OK button.

To Add a New User

1. Choose File | Security | Edit Security in the menu bar.

2. Click the New User button.

3. Specify the information for the new user.

A user’s information includes:

User Name The name the user must type when logging in.

Full Name The user’s full name (which may be different from
User Name).

Description Information about the user.

Password The password that the user must type when
logging in.

Confirm Password A verification of the password.

User Cannot
Change Password

Click this box to prevent users from changing
their own passwords.
232

System Administration
Controlling System Security

.

rs.

4. Choose the OK button.

To Modify an Existing User

1. Choose File | Security | Edit Security in the menu bar.

2. Click a user in the list under User Name.

3. Choose the Edit button.

4. Modify the information associated with a user.

See “Adding a New User” above for a description of user information

To Delete an Existing User

1. Choose File | Security | Edit Security in the menu bar.

2. Click a user in the list under User Name.

3. Choose the Delete button.

To Modify a User’s Privileges

Note Users derive their privileges from the group(s) in which they are membe

User Inactive Click this box to deactivate the user’s access to
the software but retain the account information for
future use.

Groups: Member
of/Not Member of

Click the Add or Remove buttons as needed to
specify the user’s membership in a group. For
example, click the name of a group the user is not
a member of, and then click the Add button to add
the user to that group.

Note: New users are not automatically assigned
to any group.
 233

System Administration
Controlling System Security
1. Choose File | Security | Edit Security in the menu bar.

2. Modify the privileges of the group(s) to which the user belongs or modify
the user’s membership in the groups.

To Add a New Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Choose the New Group button.

3. In the Group Name field, type a name for the new group.

4. In the Description field, type a brief description of the new group.

5. Click the Add or Remove buttons as needed to specify which users
belong to the new group. For example, click the name of a non-member,
and then click the Add button to add that person to the group.

6. Choose the OK button.

To Modify an Existing Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Select an existing group.

3. Choose the Edit button.

4. Make changes, as necessary.
234

System Administration
Adding Custom Tools to HP TestExec SL

the

u
 bar.
Adding Custom Tools to HP TestExec SL
For an overview of custom tools, see “Using Custom Tools to Enhance
Environment“ in Chapter 3 of the Getting Started book.

Syntax for Adding Custom Tools

When you define custom tools, items that invoke them appear in a men
named Tools that otherwise does not appear in HP TestExec SL’s menu

The syntax for each item you add to the Tools menu is:1

<Tooln>=<Title>;<Type>;<Specification>

where

1. Note the use of semicolons (;) as delimiters between some items. If you omit
items, be sure to leave the semicolons as placeholders.

This item... Is...

Tooln A name and unique numeric identifier (n) for a tool. The
name of the tool must be “Tool” in the first level of the
menu structure, and the name of a [section] in submenus.
The numeric identifier’s value can be 0 through however
many items appear at any given level in the Tools menu.
The numbers must be in ascending order.

Title The title of an item as you want it to appear in the Tools
menu. Title is ignored if Type is SEPARATOR.

Type The type of item, which can be:

EXE Your tool is an executable program;
i.e., its extension is “.exe”, “.com”, or
“.bat”.

DLL Your tool is a function in a DLL.

MENU Creates a new submenu in the Tools
menu.
 235

System Administration
Adding Custom Tools to HP TestExec SL
A simple example that runs WordPad might look like this:

[Tool]
Tool0=Run WordPad;EXE;c:\program files\accessories\wordpad.exe

A slightly more complex example that creates multiple tools might look like
this:

[Tool]
Tool0=Run WordPad;EXE;c:\program files\accessories\wordpad.exe
Tool1=Copy Testplan Files to Production;EXE;c:\MyFiles\CopyFiles.bat

SEPARATOR Creates a separator bar between
items in the Tools menu

Specification A field whose contents vary with the Type of item.

If Type is... Then...

EXE Use this field to specify the pathname
of the executable file to run; e.g.
“c:\winnt\notepad.exe” or
“c:\temp\myfile.bat”.

DLL Use this field to specify the pathname
of the DLL, followed by a space and
the name of the function to run in the
DLL; e.g., “c:\MyDLL.dll MyFunction”.
If you omit the function’s name, it
defaults to “execute”.

MENU Use this field to specify the name of a
new [section] that defines a submenu
that contains a numbered list of
custom tools.

SEPARATOR Leave this field blank.
236

System Administration
Adding Custom Tools to HP TestExec SL
Finally, an example that creates multiple tools, contains a separator bar, and
includes tools in a submenu might look like this:

[Tool]
Tool0=Run WordPad;EXE;c:\program files\accessories\wordpad.exe
Tool1=Run Custom Tool in DLL;DLL;c:\MyFiles\MyDLL.dll MyFunction
Tool2=;SEPARATOR;
Tool3=File Copying Utilities;MENU;CopyFilesSubmenu

[CopyFilesSubmenu]
CopyFilesSubmenu0=Copy Files to Production;EXE;c:\CopyToProduction.bat
CopyFilesSubmenu1=Copy Files to Archive;EXE;c:\CopyToArchive.bat

To Add Entries to the Tools Menu

1. Use a text editor, such as WordPad in its text mode, to open file
“tstexcsl.ini” in the “bin” directory beneath HP TestExec SL’s home
directory (which by default is “\Program Files\HP TestExec SL”).

2. Locate the [Tools] section in the file.

3. Add entries that conform to the syntax shown above.

4. Save the file and exit the editor.

5. Restart HP TestExec SL so it will reread the initialization file.
 237

7

Working with VXIplug&play Drivers

This chapter provides information about using HP TestExec SL with standard
VXIplug&play drivers for instruments.
239

Working with VXIplug&play Drivers
What is VXIplug&play?

s—

to
What is VXIplug&play?
VXIplug&play is an industry standard that lets you program standalone and
VXIbus instruments using various programming languages, such as
HP VEE, Visual Basic, and Visual C++. VXIplug&play drivers have a
consistent architecture, and are developed and used in a consistent fashion.
They let vendors of instruments develop drivers for their own instruments,
and ensure that those drivers are interoperable with drivers provided by other
vendors.

VXIplug&play instrument drivers are conceptually one layer above
traditional instrument programming, which requires individual, low-level
I/O statements in an application program that controls instruments. Instead,
VXIplug&play drivers let you use higher-level languages to call predefined
functions with names like init (initialize) and reset whose functionality
may include numerous low-level I/O calls. Because these functions are
written by those who know the instruments best—the instrument vendor
they are optimized to use the unique capabitities of each instrument.

Note Your main source of information about VXIplug&play is the documentation
provided with your instrument drivers. For example, you can look there
find information about the “include” files needed when using programs
written in the C language to control instruments via VXIplug&play drivers.
240

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXIplug&play Work Together?

 see

lose

set
the
lar

 as

ng

are.
How Do HP TestExec SL & VXIplug&play Work
Together?
VXIplug&play instrument drivers are compatible with HP TestExec SL’s
strategy for hardware handlers. (For an overview of hardware handlers,
Chapter 3 in the Getting Started book.) For example, both VXIplug&play
drivers and hardware handlers include functions to initialize, reset, and c
hardware modules such as instruments.

Besides a small set of function calls shared by VXIplug&play drivers and
HP TestExec SL’s hardware handlers, each driver strategy has its own
unique aspects. VXIplug&play drivers include functions that are specific to
particular types of instruments. For example, although the drivers for a
DMM and a frequency counter both provide functions to initialize and re
them, one instrument requires different functions to control it than does
other because the functionality of the instruments is dissimilar. In a simi
fashion, HP TestExec SL’s hardware handlers may include additional
functions that are specifically used to control switching hardware—such
SetPosition() and GetPosition()—via the Switching Path Editor.

When HP TestExec SL runs, it automatically calls as needed the followi
functions in hardware handlers or VXIplug&play drivers associated with
hardware modules via HP TestExec SL’s Switching Topology Editor:

• Functions used to initialize hardware prior to using it.

In hardware handlers, this is the Init() function (which also resets the
module when called). In VXIplug&play drivers, these are functions
whose names include “init”; e.g., hp34401_init.

• Functions used to reset hardware to a known state.

In hardware handlers, this is the Reset() function. In VXIplug&play
drivers, these are functions whose names include “reset”; e.g.,
hp34401_reset.

• Functions used to close—i.e., terminate communication with—hardw
 241

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXIplug&play Work Together?

s
In hardware handlers, this is the Close() function. In VXIplug&play
drivers, these are functions whose names include “close”; e.g.,
hp34401_close.

Besides automatically initializing, resetting, and closing instruments via
VXI plug&play drivers, HP TestExec SL lets you interactively control
instruments from action code that you write. The method for doing this i
described next.
242

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?
How Do Actions Control Instruments via
VXIplug&play?
HP TestExec SL provides API functions used to communicate with
instruments from actions via VXIplug&play drivers. Shown below is an
example of how an action written in C can communicate with an instrument
via a VXIplug&play driver.

void UTADLL ProgramPowerSupply (HUTAPB hParameterBlock)
{
// Action routine that programs an HP 66312 power supply.
// Example assumes that parameter block contains three parameters:
// Voltage - type Real64
// Current - type Real64
// PowerSupply - type Inst

// Assign miscellaneous variables
HUTAREAL64 hData;
ViStatus ErrorCodes;
HUTAINST hInstrument;

// Get value of voltage from parameter block
hData = UtaPbGetReal64(hParameterBlock, "Voltage");
double dVolt = UtaReal64GetValue(hData);

// Get value of current from parameter block
hData = UtaPbGetReal64(hParameterBlock, "Current");
double dCurr = UtaReal64GetValue(hData);

// Get the ViSession identifier from the parameter block
hInstrument = UtaPbGetInst(hParameterBlock, "PowerSupply");
long lViSession = UtaInstGetViSession(hInstrument);

// Set the voltage & current, and turn on the output
ErrorCodes = hp66312_voltCurrOutp (lViSession, dVolt, dCurr);

...(optional code that checks ErrorCodes for power supply errors)

return;
}

 243

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

er

e

 in
k.

at
s
In the example above, a call to UtaPbGetInst() returns the handle to a
data container that contains data for an instrument—in this case, a pow
supply—from the action’s parameter block. Given that handle, a call to
UtaInstGetViSession() returns a unique identifier for the
instrument’s ViSession. Once the identifier of the ViSession is known, th
example uses a standard VXIplug&play call, hp66312_voltCurrOutp,
to program the power supply to voltage and current limit settings passed
as parameters—”Voltage” and “Current”—in the action’s parameter bloc

The same example is shown below rewritten in C++ to use data types th
HP TestExec SL implements as C++ classes. Although the syntax differ
somewhat from the C example, the concepts are similar.

void UTADLL ProgramPowerSupply (HUTAPB hParameterBlock)
{
// Action routine that programs an HP 66312 power supply.
// Example assumes that parameter block contains three parameters:
// Voltage - type Real64
// Current - type Real64
// PowerSupply - type Inst

// Assign miscellaneous variables used in this function
ViStatus ErrorCodes;
long lViSession;

// Assign variables from parameters used by this action routine
IUtaInst hPowerSupply (hParameterBlock, "PowerSupply");
IUtaReal64 Volt(hParameterBlock, "Voltage");
IUtaReal64 Curr(hParameterBlock, "Current");

// Get the ViSession identifier from the instrument handle
lViSession = UtaInstGetViSession (hPowerSupply);

// Set the voltage & current, and turn on the output
ErrorCodes = hp66312_voltCurrOutp (lViSession, Volt, Curr);

...(optional code that checks ErrorCodes for power supply errors)

return;
}

244

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?
Programming other instruments from actions via VXIplug&play drivers is
similar. Once you have obtained the identifier of a ViSession with the
instrument, you can call functions in the VXIplug&play driver.

For more information about creating C actions, see “Working with C
Actions” in Chapter 3 of this book.
 245

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

To Control a VXIplug&play Instrument from an
Action

Configuring HP TestExec SL to Use VXIplug&play
Instruments

Before an action can control instruments via VXIplug&play, you must make
HP TestExec SL aware of those instruments, as described below.

1. If the necessary I/O libraries and VXIplug&play drivers for instruments
are not already installed, install and configure them as described in their
documentation.

2. Use HP TestExec SL’s Switching Topology Editor to add to the test
system’s topology a module for each instrument that uses a
VXI plug&play driver, as shown below. Typically, you will do this in the
system layer of topology; i.e., in file “system.ust”.
246

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

alls
ith

 to
st
he

s.

lled

ou
” for
eter
Do the following when associating an instrument that uses a
VXIplug&play driver with a module:

• For the Prefix, enter the name of the instrument as it appears in c
to the driver; e.g., calls to HP 663x2-series power supplies begin w
“hp663x2” (as in “hp663x2_init”) so that is what you should enter.

• For the Library entry, specify the name of the DLL in which the
VXI plug&play driver for the instrument resides.

• Press the Add button to load the parameter block.

• Use the value of the Instrument Descriptor in the parameter block
define a unique instance of the instrument. For example, if your te
system has two HP 663x2-series power supplies, you might give t
first a Name of “PowerSupply1” at address “GPIB0::5” and add a
second module named “PowerSupply2” at some other I/O addres

• Press the Update button to save your changes.

For more information about using the Switching Topology Editor, see
Chapter 4 in this book.

Creating the Action

Once HP TestExec SL is aware of instruments in your test system contro
via VXIplug&play, you can create actions that control them. Actions that
control instruments via VXIplug&play are similar to other kinds of actions
except that when using the Action Definition Editor to define the action, y
must add to the parameter block a parameter whose type is “Instrument
the instrument you wish to control. The example below shows this param
 247

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action
as well as parameters for setting the voltage and maximum current output
from a power supply.

Do the following to add a parameter for the instrument:

1. In the Action Definition Editor, choose the Add button.

2. When the row containing a new parameter appears, set the Data Type to
“Instrument”.

3. Enter a Name and Description for the parameter.
248

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

 in

e
4. Click under Value and choose the desired instrument from the drop-down
list that appears there, as shown below.

Now you must write the code that implements the action using the concepts
described earlier under “How Do Actions Control Instruments via
VXI plug&play?”

For more information about using the Action Definition Editor to define
actions, see “To Define an Action“ and “Using Parameters with Actions”
Chapter 3 in this book.

Using the Action in a Test

As shown below, using an action that programs an instrument via a
VXI plug&play driver is similar to using other kinds of actions in tests. Th
 249

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

er

o a
only thing different is that this action’s parameter list includes a paramet
that identifies which instrument is being controlled.

For more information about using actions in tests, see “Adding Actions t
Test/Test Group“ in Chapter 2 of this book.
250

Working with VXIplug&play Drivers
Beyond VXIplug&play

bly

ter
nd
ch

ter.

at

e

nced
Beyond VXIplug&play
A conceptual diagram of the layering of hardware and software when using
HP TestExec SL with hardware handlers is shown below.

The model when using HP TestExec SL with VXIplug&play instruments
looks like this:

Recall that hardware handlers and VXIplug&play drivers are compatible,
but that their specific implementation—i.e., features—can vary considera
from one handler or driver to the next. For example, VXIplug&play drivers
contain functions whose implementations are specific to a particular
instrument. Although you trigger both a frequency counter and a voltme
to take a reading, each type of instrument performs a different function a
requires different commands to trigger it. Similarly, you might program ea
to a specific range prior to triggering it, but the details of the commands
required to change ranges would be different for a counter and a voltme

As with VXIplug&play drivers, hardware handlers provide functionality th
is unique to them. For example, hardware handlers let you send status
messages to HP TestExec SL’s Watch window during debugging (with th
DeclareStatus() function). Also, they let you monitor the status of
tracing (with the AdviseTrace() function) and modify the hardware
handler’s behavior “on the fly” as appropriate for greater speed.

Suppose you could combine the functionality of hardware handlers and
VXI plug&play drivers. Ideally, the combination would provide
instrument-specific features needed to control instruments plus the enha
 251

Working with VXIplug&play Drivers
Beyond VXIplug&play

rs.

icates

d or

ut
interaction with HP TestExec SL’s features possible via hardware handle
The conceptual diagram below shows how this is possible without modifying
the VXIplug&play driver.

If desired, you can create an enhanced hardware handler that commun
with or “handles” the VXIplug&play driver. When HP TestExec SL calls
instrument-specific functions that reside in the VXIplug&play driver, you
have the option of passing them through the hardware handler unmodifie
enhancing their behavior.

For an example of an enhanced hardware handler that adds status
information to a VXIplug&play driver, search online help for “example,
sample code for enhancing a VXIplug&play driver.” Comments in the
example describe how to use the Switching Topology Editor to associate
handlers/drivers with modules when using this strategy.

For more information about the features of hardware handlers, see “Abo
Hardware Handlers“ in Chapter 3 of the Getting Started book. For more
information about creating hardware handlers, see Chapter 2 in the
Customizing HP TestExec SL book.
252

8

Using String Formatting

This chapter provides information about how you can use HP TestExec SL to
create strings that contain replaceable parameters whose values are updated
when the string is read from or written to.
253

Using String Formatting
What is a Formatted String?

part,

%).
What is a Formatted String?
HP TestExec SL lets you create or modify strings, apply formatting to
strings, and have the formats stored with the strings for subsequent use. As
shown below, a formatted string consists of one or more fixed parts that you
specify plus one or more replaceable parameters or placeholders for which
actual values are substituted when reading or writing the string.

Refer the the example below.

The serial number is %System.SerialNumber%

The string has a fixed part and a replaceable part. The fixed part, which you
specify as a standard string, is “The serial number is”. The replaceable
whose actual value will be determined when the string is used, is
“%System.SerialNumber%”. Notice how it is enclosed in percent signs (
This placeholder references a variable named SerialNumber, which is a
symbol in a symbol table named System.

+=Formatted String Fixed Parts Replaceable Parameters
254

Using String Formatting
The Two Types of Formatting Operations

The Two Types of Formatting Operations
There are two types of formatting operations you can assign to strings in
HP TestExec SL:

Each is individually described below.

Updating a String from its Replaceable Parameters

Suppose the formatting operation specified for a string is “Update string
from its parameters.” A diagram of the string from the previous example
prior to replacing the paremeter with its actual value is shown below.

Suppose the value of SerialNumber is “1234”. If so, the actual value
returned when the string is read will be:

The serial number is 1234

Update
string from
parameters

The string is updated from the values of items referenced
by replaceable parameters in the string. The formatting
operation occurs before the value of the string is returned to
the code that requests it.

Update
parameters
from string

The values of items referenced by replaceable parameters
in the string are updated from the string. The formatting
operation occurs after the value of the string is written.

+"The serial number is " %System.SerialNumber%
Fixed Part Replaceable Parameter
 255

Using String Formatting
The Two Types of Formatting Operations

, or
 to

for

date
The diagram below shows how the substitution of an actual value from the
symbol table is made.

Although this example is simple, there could have been more than one
replaceable parameter and they could have appeared anywhere—at the
beginning of the string, in the middle of the string, at the end of the string
in various combinations. Also, there could have been several fixed parts
the string, with replaceable parameters interspersed among them. For
example, prior to replacement the string could have been:

The serial number is %System.SerialNumber% for the module

Here, the string consists of two fixed parts—”The serial number is” and “
the module”—and one replaceable parameter between them.

Updating Replaceable Parameters from a String

What happens when the formatting operation specified for a string is “up
parameters from string?” The string is parsed and the values of items

+"The serial number is " "1234"
Fixed Part Replaceable Parameter

SerialNumber
"1234"

more symbols

System symbol table

substitution
256

Using String Formatting
The Two Types of Formatting Operations

e at

ion

tion
referenced by replaceable parameters in the string are updated from the
string. Refer to the example below.

Here, the value of the replaceable parameter in the string is passed to the
symbol named SerialNumber in the System symbol table. The string
for this operation looks the same as in the previous example; i.e.,:

The serial number is 1234

However, this time the formatting operation is “Update parameters from
string”. Because the format specifies “The serial number is” as the fixed
part, followed by a replaceable parameter that references a symbol in a
symbol table, the string is parsed when written to so that the actual valu
the replaceable parameter is written to its associated symbol.

Note If you wish to use the “Update parameters from string” formatting operat
to update the values of parameters in an action’s parameter block, those
parameters must be “output” parameters; i.e., their Action Output option
must have been enabled when they were created with the Action Defini
Editor.

+"The serial number is " "1234"
Fixed Part Replaceable Parameter

SerialNumber
"1234"

more symbols

System symbol table

substitution
 257

Using String Formatting
How Does String Formatting Work?

at

How Does String Formatting Work?
String formatting lets you apply a format to a string in a parameter blocks or
in a symbol table. Subsequent use of the strings makes use of the format by
applying the formatting when reading from or writing to the string.

Refer to the example below. Here, the String Editor1 was used to apply a
format to a string in a parameter block in an action named “MyAction” th
was created with the Action Definition Editor. UtaPbGetString() and
UtaPbSetString() functions in action routines can access the string,
which will be read or written with the specified format applied to it.

1. The String Editor is one of several editors that let you edit various types of
data in HP TestExec SL.

Action Code

UtaStringGet Value()

UtaStringSet Value()

MyAction parameter block

format applied to string
in parameter block

String Editor

read the string’s value write the string’s value
258

Using String Formatting
Which Data Types are Supported for Replaceable Parameters?
Which Data Types are Supported for
Replaceable Parameters?
The following data types are supported for replaceable parameters in string
formats.

Note Even though they are used in strings, replaceable parameters do not
necessarily need to be of type String. Because they are surrounded by
percent signs—e.g., %MyParm%—that have a special meaning to
HP TestExec SL, replaceable parameters are automatically translated
between their native data types and strings as needed.

Data type Comments

Int32

Int32Array One dimension only, elements are written/read separated
by commas

Real64

Real64Array One dimension only, elements are written/read separated
by commas

String

StringArray One dimension only, elements are written/read separated
by commas

Waveform Elements are written/read separated by commas, only
values of samples—i.e., point data—are used
 259

Using String Formatting
What Happens if “Update Parameters from String” Fails?
What Happens if “Update Parameters from
String” Fails?
Correct operation of string formatting when updating replaceable parameters
from a string assumes that values in the actual string match the values that
you specify in the format. For example, with the exception of spaces in a
formatted string, characters in the fixed part of the string format and the

actual string must match exactly.1 If they do not match, any values beyond
the point of the mismatch when the string is read sequentially are suspect, as
shown below.

If a mismatch occurs, the values returned for replaceable parameters beyond
the point of the mismach are error values based upon the data type of the
replaceable parameters, as shown below.

1. A single space (blank or tab) in the format matches an arbitrary number of
space characters in the string value, including zero space characters.

String format; i.e., the expected response string:

The actual response string:

EFGH

Mismatch! Data following may be invalid!

replaceable parameter #1ABCD

EF xy

replaceable parameter #2

replaceable parameter #1ABCD replaceable parameter #2

If the data type of the replaceable parameter is...a The returned error value will be...

Int32, Int32Array -99999999

Real64, Real64Array, Waveform -9.99e37

String, StringArray “ScanError”

a. Arrays used with string formatting must be single-dimensional.
260

Using String Formatting
What Happens if “Update Parameters from String” Fails?

ue
Note Keep in mind this need for matching formats when working with strings
used with instruments that are IEEE-488.2 compliant. The commands used
to program those instruments use commas and semicolons as separators
between values, and so should string formats used with them. Otherwise,
values cannot reliably be distinguished from one another.

If the formatting operation is “update parameters from string” and the
replaceable parameter in a string is an array data type, the scanned val
does not need to provide values for all the elements in the array. Any
elements for which values are not explicitly specified will be set to the
values listed below.

If the data type of the element is...a

a. Arrays used with string formatting must be single-dimensional.

The value will be set to...

Int32Array 99999999

Real64Array, Waveform 9.99e37

StringArray “NoValue”
 261

Using String Formatting
Notes About String Formatting

rs

2
eters

 for

hen
r the
l

to the
Notes About String Formatting
Keep the following limitations in mind when using the “update paramete
from string” formatting operation.

• Scanning a string for replaceable parameters whose data type is Int3
returns all adjacent numeric values. This means that two Int32 param
in a row must be separated by a fixed part. If not, both values will be
merged to return the value of the first replaceable parameter and the
second replaceable parameter will return an error value. Similarly, a
Real64 parameter immediately followed by an Int32 parameter—i.e.,
with no fixed part separating the values—will cause a scanning error
the Int32 parameter.

• The values for elements in an array must be separated by commas w
they appear in formatted strings used to update parameters. Conside
following formatting operation, which references a single-dimensiona
array named MyArray in the SequenceLocals symbol table:

Suppose you used the following string in your action routine to write
values to the elements in the array:

The values of the elements are: 5,55,555

Notice how commas are used as separators between values written
array’s elements.
262

Using String Formatting
Notes About String Formatting

ments

 no

ic
The array would look like this after the values were written to it:

• String arrays must not have commas in the values for their elements
because commas are used to separate values when scanning the ele
in arrays.

• If a replaceable parameter contains only the name of a symbol—i.e.,
specifier for the table in which the symbol resides—the order used to
search for the symbol is the current symbol table followed by all publ
symbol tables in the order of their scope within the testplan.
 263

Using String Formatting
How are Formatted Strings Useful?

ual

ed
es to

d or

ics.
elp
How are Formatted Strings Useful?
Serial numbers provide an example of how string formatting can be useful.
Suppose the serial numbers for modules on your test system consist of a
module name plus a unique identifier for each module. For example, the
name of the module might be “ControlModule” and the unique identifiers
for individual modules might range from 1111 to 9999. If so, a complete
module serial number might be “ControlModule2345”.

The System symbol table contains predefined symbols named
ModuleType and SerialNumber, both of which are strings. When it
begins running, your testplan could prompt the system operator for the
module type and write it to ModuleType. As it tested individual modules,
your testplan could use a bar code reader to read identifiers from individ
modules and temporarily store them in SerialNumber. If its formatting
operation was specified as “Update string from parameters,” the formatt
string shown below could be used in action code to concatenate the valu
produce the complete serial number for each module.

Serial number is %System.ModuleType%%System.SerialNumber%

The complete serial number could be printed on failure tickets as neede
used elsewhere, such as in datalogging to collect information about the
testing process.

The use of string formatting is described in greater detail with related top
The mechanics of applying string formatting are described in the online h
for HP TestExec SL’s String Editor.
264

9

.”
Using Actions to Control Message-Based
Instruments

This chapter provides information about using predefined actions in
HP TestExec SL to control message-based instruments, which makes use of
string formatting features described in Chapter 8, “Using String Formatting
265

Using Actions to Control Message-Based Instruments
Overview of Controlling Message-Based Instruments

e

s
Overview of Controlling Message-Based
Instruments

Why Use Actions to Control Message-Based
Instruments?

Message-based instruments are instruments controlled by human-readable
messages written in a high-level programming language for instruments,
such as SCPI (Standard Commands for Programming Instruments), rather
than by a more cryptic method such as directly writing/reading registers in
the instrument. However, even using a high-level instrument control
language typically requires knowledge of the command syntax of
instruments.

If you do not already have actions that control message-based instruments,
features in HP TestExec SL let those who understand the syntax for
controlling instruments create new actions that are readily usable by others
who do not necessarily know how to program instruments. Actions used to
control instruments resemble other actions but have instrument-specific
parameters in which users specify data to be sent to or received from
instruments. These actions are used with hardware handler software that:

• Manages and interfaces with message-based instruments

• Provides a standard set of functions that send commands and receiv
responses as well as reset the instrument, query its error status, and
retrieve its ID. You can customize these for specific instruments.

• Captures in HP TestExec SL’s Trace window the history of command
sent to and received from instruments

• Supports the display of instrument-specific state information in
HP TestExec SL’s Watch window

• Supports automatic creation of instrument-specific nodes for use in
HP TestExec SL’s switching topology
266

Using Actions to Control Message-Based Instruments
Overview of Controlling Message-Based Instruments

 of

ent

t in
When Can I Use Actions to Control Message-Based
Instruments?

You can use actions to control a message-based instrument if:

• Your interaction with the instrument is limited to replacing parameters
type Int32, Int32Array, Real64, Real64Array, String, StringArray or
Waveform in commands sent to or received from the instrument

• You do not need to handle SRQs (service requests) from the instrum1

• The instrument is GPIB, RS-232, or VXI-based

• The instrument is message-based; i.e., it responds to messages sen
strings. Instruments that are IEEE-488.2 compliant are examples of
message-based instruments.

1. You can use simple error checking at the end of each message sent or
monitor the instrument for a timeout condition.
 267

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

 it to

eters
s to
t
ch
 than
at;
Using Actions to Control Message-Based
Instruments

Note Topics in this section describe the use of formatted strings. For an overview
of formatted strings, see Chapter 8, “Using String Formatting.”

Adding the Instrument to the Switching Topology

Do the following once for each message-based instrument you wish to
control via actions.

1. Physically install the instrument in the system, such as by connecting
GPIB or by inserting it into a VXI card cage

2. Add the instrument to the system layer of the switching topology by
following the general instructions in “To Add a Module” in Chapter 4
and:

a. Specifying “hwhmsginst.dll” as the Library

b. Choosing which interface style the instrument uses, which can be
stdGPIB, stdVXI, or stdSerial

c. Filling in the parameters for the instrument

Usually, this means setting the address of the instrument in param
(logical address for VXI and GPIB). Use the parameter description
guide your choices. You can let other parameters use their defaul
values if the instrument is compliant with SCPI or IEEE-488.2, whi
includes most new message-based instruments. If you have more
one of the same instrument or module, the name should reflect th
e.g., the first power supply could be “PS1” and the second “PS2.”
268

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

ils

l
rrent
sk,
ply

ed
.

Which Actions Does HP TestExec SL Provide?

The following actions are provided with HP TestExec SL for controlling
message-based instruments. They reside in directory “<HP TestExec SL
home>\actions”. Note that their names begin with “msginst”.

You can find detailed descriptions of these actions by choosing the Deta
button on the Insert Action box before inserting them into a test.

Choosing Which Action to Use

Before you can control an instrument, you must know which kinds of
measurement-related tasks you wish to do with it. For example, a typica
task associated with a power supply might require a “set voltage and cu
limit” action to program it to a known state. Once you have identified a ta
choose an action that is appropriate for it. For example, for a power sup
you could choose msginstSend to send a message that programs it to a
known state.

msginstReset Resets the instrument

msginstGetErrorStatus Returns the error status byte from the instrumenta

msginstGetID Returns an identifying string from the instrumentb

msginstSend Sends a command to the instrument and does not expect a
response

msginstReceive Return a response string from the instrument if one has previously
been requested from the instrument via a msginstSend action

msginstQuery Sends a command to the instrument and waits until it receive a
response

msginstBinarySend Sends an arbitrary byte array as part of a message to the instrument

msginstBinaryReceive Receive an arbitrary byte array as part of a response from the
instrument

a. The action’s default settings are correct for IEEE-488.2 compliant instruments. Others may ne
changes to the command sent to the instrument and the mask used to isolate error status bits

b. The action’s default settings are correct for IEEE-488.2 compliant instruments to return a
response that uniquely identifies the instrument.
 269

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

ify

 for

 and

ings

or

h
ke a
Setting Up the Action

Begin by verifying that the action you have chosen can communicate with
the desired instrument, and that you are using the correct command syntax to
control that instrument, as described below.

1. Create a new testplan for setting up the action, add the chosen action to a
new test in the testplan, and specify the action’s parameters.

In the case of an action that controls a power supply, you might spec
the parameter named Inst to reference instrument “PS1” and the
parameter named “Command” to set a particular voltage and current
the power supply, such as “:VOLT 5.0;:CURR 2.0”. For example:

2. Run the test and make sure the instrument is receiving the command
acting on it.

For a power supply, you could use its front panel to examine the settt
for voltage and current, or use a multimeter to verify its output.

For more information about adding a test to a testplan, see Chapter 1. F
more information about adding actions to tests and specifying their
parameters, see Chapter 2.

Copying the Action Definition

Because you do not want to overwrite the original action definition, whic
you may need to use again, you must create a copy of it for your use. Ma
copy of the action definition by:

1. Selecting the action in the list under Actions.

2. Choosing the Details button to invoke the Action Definition Editor.
270

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

VI.”

y

it is

c

to a
 and
3. Choosing File | Save As in the menu bar.

4. Specifying a new, unique name for the action definition.

Use a name that reflects the task the action does, and place it in a
directory that HP TestExecSL searches for action definitions. For
example, the name might consist of a descriptor for the instrument
followed by whatever task the action does, such as “HP6632Program

Note If you accidentally overwrite an original action definition, look in director
“<HP TestExec SL home>\samples\msginst\MsgInstUmd” for a copy of it.

Customizing the Action Definition

Now you can customize the generic action definition you copied so that
usable by those who do not understand the commands used to program
instruments. Do the following:

1. Use the Add button in the Action Definition Editor to add task-specifi
parameters to the copy of the action definition.

For an action that programs a power supply, you might add two new
parameters named “Voltage” and “Current”, as shown below.

2. Return to the list of parameters for the original action you inserted in
new test. Select the Value field for the parameter named “Command”
copy its contents to the Windows clipboard (Edit | Copy or Ctrl-C).
 271

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

T

lue

er

tice

Continuing with the example of a power supply, you would copy “:VOL
5.0;:CURR 2.0” to the clipboard.

3. In the Action Definition Editor, paste the copied command into the Va
field for the parameter named “Command” (Edit | Paste or Ctrl-V).

4. Close the testplan that contains the original action.

5. In the Action Definition Editor, choose the Value field for the paramet
named Command.

6. Click in the Value field and choose the button.

7. When the String Editor appears, choose its Formatting tab

8. Change the Format Operation to “Update string from parameters.” No
that the command is copied to the Format field.

For the example of a power supply, the result would look like this:

9. Do the following for each text item for which you wish to substitute a
replaceable parameter in the format:

a. Use the mouse to select the text item.
272

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

wn

For the example of a power supply, you might select “5.0”, as sho
below.

b. Choose the “Reference to” option and use its drop-down list to
specify which item to reference in the symbol table named Current
table.1

For the example of a power supply, you would choose the symbol
named Voltage in Current table to replace the text item “5.0”, as
shown below.

1. Current table means the symbol table in which the string being
formatted resides. Here, it is the symbol table that contains the action’s
parameter block, which contains the new parameters you created.
 273

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

nt

c. Choose the Insert into Format button.

d. Verify that the format now has the name of the item you chose
inserted in place of the text item you previously selected.

For the example of a power supply shown below, notice that the text
entry “5.0” has been replaced by a replaceable parameter named
Voltage. Also notice that “Reference to” references “Current
table.Voltage”; i.e., a symbol named Voltage in the current symbol
table.

The format for a complete string to program the voltage and curre
for the power supply example might look like this:

10.Choose the OK button.

11.Update the action description in the Action Definition Editor to reflect
what the action now does, including how to use the task specific
parameters.
274

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments
A description of the example of a power supply might look like this:

12.Use File | Save to save the modified action definition.

Why Did You Customize the Action Definition?

Until you have done the preceding procedure a few times and used the
results, it may not be obvious what you have done or why you would want to
do it. Refer to the diagram below.

As stated, when you use the predefined actions and formatted strings to
control message-based instruments, only the developer of an action needs to
understand the syntax of the commands used to program the instruments.
Instead of specifying cryptic syntax, users of the action simply fill in values
for parameters that have obvious names such as Voltage and Current.

In the example above, programming Voltage to 5 and Current to 2 is as
simple as specifying the values for a couple of parameters. When the action
executes, the values of the parameters named Voltage and Current will be

Users of the action specify values
that are easy to understand. Only
the developer of the action needs
to understand the commands used
to program instruments.
 275

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

 as

e

on
at

t
substituted into the command syntax, as shown below, and the resultant
command will be sent to the instrument.

Using the Action in a Testplan

1. Create a new testplan, add a test to it, and insert the new action into that
test. Run the test with several settings for its task-specific parameters to
verify that the action is working correctly. If problems arise, you can
modify the action’s format string in the testplan until the action works
desired.

For the action used to program a power supply, you would set Voltag
and Current to various values and and verify that the output from the
power supply is correct.

2. After you have verified that the action works correctly, open its definiti
in the Action Definition Editor and copy any changes made to the form
string back to the action definition.

3. If you wish to ensure that users of the action cannot modify its forma
string, choose the Locked option, as shown below.

4. If you modified the action, save it.
276

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments
What if the Instrument Returns a Response?

The preceding topics described how to use actions to send commands to an
instrument. But what if the instrument returns a response string instead? The
process for creating an action to control an instrument that returns a response
is similar to that for sending a command to an instrument, but the details
vary slightly, especially when customizing the action definition. Several
sections from the previous procedure reappear below with descriptions of
what is different when receiving a response from an instrument.

Note If the instrument returns a single value in its response, it may be adequate to
use that as the result from the action. If the instruments returns multiple
values in its response, the following topics describe how to extract each
response to a separate output parameter in the action. If desired, you can use
the msginstQuery or msginstReceive actions to see a sample of a
valid response.

Choosing Which Action to Use

Consider the following when choosing which action to use with an
instrument that returns a response.

Setting Up the Action

Specify a response string in the Response parameter. Run the action to verify
that it receives a response from the instrument. To do this, you may need to
precede it with an action that sends a command to the instrument. Or, you

If the instrument... Then use...

Immediately returns a response to a
command

msginstQuerya

a. Using msginstQuery is generally the safer of the two approaches
because it avoids the possibiity of trying to receive a response from an
instrument without first requesting that response.

Takes awhile to return a response and you
wish to do another task while waiting

msginstSend and
msginstReceive with one
or more actions between
them to do additional tasks
 277

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

0”.
ter

c

n,
ed
re.

tput
w.
can use msginstQuery, which combines the command and response in a
single action.

In the case of an action that controls a frequency counter, you might specify
the parameter named Inst to reference instrument “CTR” and the
parameter named “Response” to accept three values in the format “0;0;
These values will contain the peak-to-peak reading returned by the coun
and the minimum and maximum voltage values of the waveform.

Customizing the Action Definition

1. Use the Add button in the Action Definition Editor to add task-specifi
parameters to the copy of the action definition.

In the case of a frequency counter, you might add three new
parameters—Reading, MinVolts, and MaxVolts—to the action definitio
as shown below. These parameters would contain the results extract
from the response string via HP TestExec SL’s string formatting featu

2. Select a parameter, choose the Edit button, and specify the Action Ou
option for each of the new parameters you just added, as shown belo
278

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

he

to a
 and

lue

er

tice

s:
3. If you wish to choose one of these parameters as the result for limits
checking, choose it in the drop-down list that appears to the right of “T
current result is:”, as shown below.

4. Return to the list of parameters for the original action you inserted in
new test. Select the Value field for the parameter named “Response”
copy its contents to the Windows clipboard (Edit | Copy or Ctrl-C).

Continuing with the example of a frequency counter, you would copy
“0;0;0” to the clipboard.

5. In the Action Definition Editor, paste the copied response into the Va
field for the parameter named “Response” (Edit | Paste or Ctrl-V).

6. Close the testplan that contains the original action.

7. In the Action Definition Editor, choose the Value field for the paramet
named Response.

8. Click in the Value field and choose the button.

9. When the String Editor appears, choose its Formatting tab

10.Change the Format Operation to “Update parameters from string.” No
that the value of the response is copied to the Format field.

For the example of a frequency counter, the result would look like thi
 279

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

0”,

bol
11.Do the following for each text item for which you wish to substitute a
replaceable parameter in the format:

a. Use the mouse to select the text item.

For the example of a frequency counter, you might select the first “
as shown below.

b. Choose the “Reference to” option and use its drop-down list to
specify which item to reference in the symbol table named Current
table.

For the example of a frequency counter, you could choose the sym
named Reading in Current table to replace the first text item,
“0”, as shown below.
280

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

ed

ol

es
 as

nt in
query

med
es—
c. Choose the Insert into Format button.

d. Verify that the format now has the name of the item you chose
inserted in place of the text item you previously selected.

For the example of a frequency counter shown below, notice that the
text entry “0” has been replaced by a replaceable parameter nam
Reading. Also notice that “Reference to” references “Current
table.Reading”; i.e., a symbol named Reading in the current symb
table.

The format for a complete string to extract the values of Reading,
MinVolts, and MaxVolts for the frequency counter example might
look like this:

The example follows the standard for SCPI programming, which stat
that response messages may contain both commas and semicolons
separators. When a single query command returns multiple values, a
comma is used to separate data items. When multiple queries are se
the same message, the groups of data items corresponding to each
are separated by a semicolon.

Here, the data items are separated by semicolons because it is assu
that these are the responses to multiple queries. Three returned valu
%Reading%, %MinVolts%, and %MaxVolts%—are referenced to
parameters with similar names in the action: Reading, MinVolts, and
 281

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

nds

n to

race

e
MaxVolts. When the actions executes, the response is returned in the
Response string and the values of the parameters named Reading,

MinVolts, and MaxVolts are updated, as shown below.1 Users of the
action can use those values as desired.

12.Choose the OK button.

13.Update the action description to reflect what the action now does,
including how to use the task-specific parameters.

14.Use File | Save to save the modified action definition.

Debugging Actions That Control Message-Based
Instruments

Keep the following in mind when debugging actions used to control
message-based instruments:

• HP TestExec SL’s trace feature is useful when debugging the comma
sent to an instrument and its responses to those commands. The
instrument handler for message-based instruments sends informatio
the Trace window when tracing is enabled for the instrument.

For more information about using the trace feature, see “Using the T
Feature to Monitor I/O Operations” in Chapter 1 of the Using
HP TestExec SL book.

1. The values shown for Reading, MinVolts, and MaxVolts are “0.0” becaus
the action has not executed and updated their values.

Parameters for "CounterResponse"
282

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

r

n.
• Predefined “msginst...” actions that may be useful during debugging
include msginstReset, msginstErrorStatus,
msginstGetID, and msginstReceive. These are described earlie
in this chapter.

• During debugging you can display the state of an instrument in
HP TestExec SL’s Watch window, as described in the following sectio
 283

Using Actions to Control Message-Based Instruments
Notes for Advanced Users

ire

re

er of

from

 the
 by

in 2

efix
 the
Notes for Advanced Users

• The predefined action named msginstBinarySend lets you send
binary data to an instruments. This is useful for instruments that requ
large amounts of data to program them, and that can accept data in a
binary format. If you wish to use this action, you must understand the
conventions for sending arbitrary blocks of data to instruments that a
IEEE-488.2 compliant.

The format that works best with msginstBinarySend is “definite
block length.” Data sent in this format begins with a prefix of
#8NNNNNNNN, where NNNNNNNN is the number of bytes to send,
padded with zeroes on the left as needed to ensure the correct numb
characters. The msginstBinarySend action lets you specify how
many elements to send from an Int32 array, how many bytes to send

each element in that array, and the order in which to send the bytes.1 The
action also provides prefix and suffix strings in which you can send
character information or extra commands to the instrument.

Note Be sure that the number of bytes to send indicated in the prefix matches
number of bytes to send indicated by the number of elements multiplied
the number of bytes per element. For example, a prefix of #800001000
means to send 1000 bytes, which could be 500 bytes per element sent
elements: 500 x 2 = 1000.

• The predefined action named msginstBinaryReceive lets you
receive binary data from instruments. The format that works best with
msginstBinaryReceive is “definite block length.” The action can
be configured to receive a fixed number of prefix characters, a fixed
number of suffix characters, and arbitrary binary data between the pr
and suffix. Binary data is stored in the elements of an Int32 array, and
action’s parameters let you specify how many bytes to put in each
element and the order of those bytes.

1. The default byte order is correct for sending binary data to instruments that
are IEEE-488.2 compliant.
284

Using Actions to Control Message-Based Instruments
Notes for Advanced Users

ad

ou
 to

now

 that

s
are

r
ent

tch

fy

• Loading the hardware handler named “hwhmsginst.dll” causes it to re
an initialization file named “hwhmsginst.ini” located in the same
directory as the “.dll” file. You can use entries in the “.ini” file to
customize the default parameter values for a specific instrument. If y
enter new, instrument-specific sections in the “.ini” file, users wishing
add an instrument of that type to the system configuration can easily
select these default parameters. This prevents them from having to k
the specifics of an instrument to use it.

Customizing the initialization file can be useful when:

a. The instrument is not IEEE-488.2 compliant, and uses commands
are different from the standard reset (*RST) and ID query (*IDN?)
commands.

b. You want to specify mnemonic node names for the terminals of an
instrument when it is added to the switching topology. NodeNamenn
arguments added to the initialization file appear in the NodeName
parameter for the module when it is added to a topology file, and
used to add instrument node names to the topology file.

c. You want programming information for the instrument to appear in
HP TestExec SL’s Watch window. WatchWindownn arguments
added to the initialization file appear in the WatchList parameter fo
the instrument, and contain query commands to send to the instrum
whenever the testplan pauses, plus a label that appears in the Wa
window for a response to the query.

File “hwhmsginst.ini” contains instructions that describe how to modi
it. Load the file into a text editor, such as WordPad in its text mode, to
read the instructions or to modify the file.
 285

10
Testing Multiple UUTs

This chapter describes how to increase the throughput of your test system by
using the HP Throughput Multiplier feature to test simultaneously multiple
UUTs with a single set of hardware resources and a single testplan.
287

Testing Multiple UUTs
About Multi-UUT Testing

e
About Multi-UUT Testing

Note Multi-UUT testing via the HP Throughput Multiplier feature requires a
separate license available from Hewlett-Packard. A license provides you
with a key that you must use to enable multi-UUT testing, as described later
in this chapter. Unless you enable multi-UUT testing, you cannot run or edit
multi-UUT testplans.

Why Test Multiple UUTs?

The hardware in a typical test system is expensive. If your test system is
testing only one UUT (unit under test) at a time, you may not be using it to
its maximum. For example, you may be tying up all the resources on a
complex (and expensive) test system just to test simple UUTs one at a time.

Sometimes testing a UUT requires expensive, additional hardware. For
example, automotive airbag modules require a shaker table to test their
impulse response, which increases the cost of the test system. Here, it is
advantageous to maximize the use of resources by shaking multiple UUTs at
once and capturing their responses in parallel. Also, such modules cannot be
shaken too many times because their sensors are fragile, which makes it
unacceptable to shake a group of them in sequence.

Another situation where the ability to test multiple UUTs can be useful is
when the printed circuit boards for UUTs are manufactured in panels. It may
be necessary to test UUTs while they are still in panel form to match how the
they are moved on an automated assembly line or to minimize their handling
time.

A common form of multiple testing is to have two UUT fixture positions and
test one position while loading/unloading the other to minimize handling
time. This is sometimes called “dual-well” testing. This, too, presents an
opportunity to save time via multiple-UUT testing.

All of these methods of testing multiple UUTs on a single test system
contribute to reducing your cost of testing per UUT. Also, testing multipl
UUTs on a single system reduces the amount of floor space that might
otherwise be occupied by multiple test systems.
288

Testing Multiple UUTs
About Multi-UUT Testing

 it

ing)

o

be

the

ads,
Note The most important thing to know about multi-UUT testing is that if your
test system has the resources to handle multiple UUTs, it often can test them
faster together than it can test them individually.

What Makes Multi-UUT Testing Faster?

At first glance, it might seem like testing multiple UUTs would be no faster
than testing them one at a time. For example, typical instruments make only
one measurement at a time, not multiple measurements that overlap one
another. However, the time needed to test a UUT is a combination of several
times:

• The time to physically handle the UUT; i.e., connecting/disconnecting
from hardware resources

• The time the UUT takes to arrive at the correct state to test it

• The time it takes to set up instruments to make a measurement

• The time it takes to make the measurement

• The time to analyze the measurement results

• The time to report the results of the measurement (including datalogg

If any of these steps dominates the total test time and that test time is to
long, there are potential opportunities to increase throughput by
simultaneously doing that step for multiple modules and overlapping the
steps that are slowest. Also, if there are multiple slow steps, there may
further opportunities for overlapping them.

Refer to the diagram below, which shows the flow of testing from top to
bottom with respect to time for two UUTs. Tasks are done in series in
conventional, sequential tests, which means the total time for testing is
sum of the times required to do the individual tasks. Multi-UUT testing,
however, lets tasks that are common to all UUTs—such as connecting lo
 289

Testing Multiple UUTs
About Multi-UUT Testing

lly

applying power, and setting up instruments—be done in parallel, which
substantially reduces the overall time for testing.

How Does HP TestExec SL Test Multiple UUTs?

A feature of HP TestExec SL called the Throughput Multiplier automatica
overlaps otherwise idle periods and in many cases lets you test multiple
UUTs faster than they could be tested individually. The Throughput
Multiplier speeds up test times by:

• Overlapping tests for a single module by using setup “dead time” to
overlap multiple tests or actions within tests

• Reducing handling time by coordinating multiple nested tests; i.e.,
running the test for UUT A while putting UUT B in place for testing

Connect load

Apply power

Set up instrument

Set up UUT

Delay

Measurement

Unload

Connect load

Apply power

Set up instrument

Set up UUT

Delay

Measurement

Unload

Connect load

Apply power

Set up instrument

Delay

Measurement

UUT1 UUT2

Set up UUT

Delay

Measurement

Unload

Set up UUT

UUT1 UUT2

Sequential Test Multi-UUT Test

on
e

te
st
290

Testing Multiple UUTs
About Multi-UUT Testing

h

t of

upon
ting
at

UT
• Reducing testing time by testing more than one module at once, whic
uses setup “dead time” and duplicated resources. Examples of this
include setting up instruments or power supplies only once and then
using them to test multiple modules.

• Allowing for multiple spots in the testplan where operations are done
simultaneously across all modules. For example, if a UUT is slow to
respond to a command, that command can be simultaneously sent to
multiple UUTs and the time spent awaiting a response is similar to tha
a single UUT instead of multiple UUTs.

Note The appearance of some of HP TestExec SL’s forms change depending
whether you are testing single or multiple UUTs. For example, when tes
multiple UUTs the Switching Path Editor presents an additional option th
lets you specify the UUT to which the switching paths apply.

What Must You Do to Test Multiple UUTs?

You can use the Throughput Multiplier to test multiple UUTs when all the
UUTs are of a single type; i.e., you cannot mix different types of UUTs in a
testplan. The overall steps you must follow when creating a multi-UUT
testplan are:

• Enable multi-UUT testing in HP TestExec SL’s initialization file

• Create a UUT topology layer for the first UUT position using UUT
position names as part of the node names associated with specific U
positions

• Create and debug a normal testplan for the first UUT position

• Convert the testplan to a multi-UUT version

• Add flow control statements as needed

• Add UUT positions as needed

• Run the testplan and debug the new UUT positions
 291

Testing Multiple UUTs
About Multi-UUT Testing
These steps are described in greater detail later.

Example of a Multi-UUT Testplan

The left pane of the Testplan Editor window might look like this for a
multi-UUT test:

Notice that many of the tests have comments to their right that identify for
which UUT positions they will execute during multi-UUT testing. These
comments are automatically inserted when you specify the multi-UUT
options for tests.

This testplan implements the flow of tests shown below.

The example above shows synchronous execution of homogeneous tests for
three UUT positions. The rows represent the tests for a particular UUT
position, such as on a multi-UUT panel, and the columns represent the flow
of time. Test1 is executed for each position and followed by Test2 and
Test3 for each position. Finally, a setup test and its associated test—
Setup4 and Test4, respectively—are executed for each position. The
dashed lines show the relationships between the setup tests and their
associated tests that do tasks such as make measurements.

Notice how variables UutPosId, UutMinPosId, and UutMaxPosId
are used in the testplan to count in the for...next...step loop. These variables

Test1

Test1

Test1 Test2

Test3Test2

Test3

Test2 Test3

Setup4

Setup4

Setup4

Test4

Test4

Test4
292

Testing Multiple UUTs
About Multi-UUT Testing

s

ou do
are predefined symbols that appear in the System symbol table when the
HP Throughput Multiplier is enabled.

You can find samples of multi-UUT testplans in directory “<HP TestExec SL
home>\samples\multipleUUT” along with a “readme.txt” file that describe
how to use them.

Symbols Used by Multi-UUT Testing

Multi-UUT testing uses the following predefined symbols in the
SequenceLocals symbol table, whose scope is global to all tests. These
symbols appear in multi-UUT testplans to control the flow of testing. In
most cases, HP TestExec SL maintains the values of the symbols and y
not need to manipulate them unless your testing needs are unique.

Symbols used to control the sequence of multi-UUT testing

UutPosId The identifier of the current UUT position when
testing a group of UUTs. The value of this symbol
should be between UutMinPosId and
UutMaxPosId.

UutMinPosId The identifier of the minimum UUT position. The
value of this symbol, whose default is 1, should be
the same as the lower boundary of any arrays used
to store data while testing multiple UUTs. A change
to this symbol’s value takes effect on the next run of
the testplan.

UutMaxPosId The identifier of the maximum UUT position. The
value of this symbo should be the same as the
upper boundary of any arrays used to store data
when testing multiple UUTs. A change to this
symbol’s value takes effect on the next run of the
testplan.

UutXoutFlags An array whose contents indicate whether to test
each UUT position. 0 indicates that the UUT in that
position should be tested, and 1 indicates that it
should not be tested.
 293

Testing Multiple UUTs
About Multi-UUT Testing

:

More About UutPosId

The previous topic lists UutPosId among the symbols used by multi-UUT
testing. Because UutPosId is integral to multi-UUT testing, additional
things you may need to know about it are listed below.

• The value of UutPosId is controlled by the sequencer inside tests

• The various options you can specify for individual tests during
multi-UUT testing (described in greater detail later) affect it as follows

Symbols used for reporting the results from multi-UUT testing

UutSerialNumbers An array of the serial numbers for the UUTs at each
UUT position.

UutTestingStates An array that contains the current state of testing for
each UUT position. These states correspond to the
testing states returned by the State property of the
HP TestExec SL Control, which is described in
Chapter 1 of the Customizing HP TestExec SL
book.

UutPosNames An array of the names for each UUT position in the
fixture.

The option... Causes the sequencer to...

Repeat this test for all UUT
Positions

Repeat the test with successive
values of UutPosId. When done, it
resets UutPosId to its starting
value.

Execute this test for the UUT
Position defined by ‘UutPosId’

Honor the value of UutPosId at the
beginning of the test; i.e., it does not
modify the value of UutPosId

Execute this test once
independent of UUT positions

Set the value of UutPosId to
UutMinPosId - 1 while the test
runs and restore the previous value
when the test ends
294

Testing Multiple UUTs
About Multi-UUT Testing

 the

ny
he

r
Multi-UUT Effects on Datalogging

HP TestExec SL maintains a separate buffer that contains datalogging
information for each UUT position. This lets HP TestExec SL create a
separate datalogging file for each UUT position. If you customize the format
of the log records to log the values of any of the symbols used for
multi-UUT testing, as described above, HP TestExec SL will ensure that
symbol UutPosId always reports the position for which the log record is
being produced. This lets you parse the log records to determine which UUT
position the log data describes. If a particular UUT position is omitted from
testing because it is disabled, no datalogging file will be created for that
UUT position.

Multi-UUT Effects on Reporting

Status information sent to HP TestExec SL’s Report window is much the
same for single or multi-UUT testing. However, at the end of each run of
testplan during multi-UUT testing HP TestExec SL will loop through the
status reporting for each UUT position. The result from each test will
indicate which position the result is for. It also will indicate as “Testplan
Stopped” any UUT positions that were not tested. Finally, it will indicate a
UUT positions that were not completely tested because of branches in t
flow of the testplan, such as On Fail Branch To branching.

Multi-UUT Effects on Testplan Listings

Multi-UUT testing displays extra information in listings of testplans and
their contents, such as:

• An indication that multi-UUT testing was enabled

• An indication of which tests will execute for all UUT positions

• The parameters used by switching actions for each UUT position

Multi-UUT Effects on Breakpoints & Single-Stepping

If a breakpoint is set on a test that has Execute for all UUT positions
specified for it (on the Options tab in the right pane of the Testplan Edito
 295

Testing Multiple UUTs
About Multi-UUT Testing

the

lay

t to

fy

tions
y a
window), the break will occur for every UUT position before executing the
test. This maintains the UutPosId setting across pauses in the testplan, and
lets looping resume at the current count when the testplan continues.

Single-stepping a multi-UUT testplan will also pause the testplan after each
iteration in the loop for all UUT positions.

When paused at a breakpoint or during single-stepping, you can examine
HP TestExec SL’s status line (at the bottom of the main window) to see
name of the UUT position that will execute next.

Multi-UUT Effects on Switching

Switching actions in tests let you control switching hardware, such as re
matrixes, to set up connections needed during testing. For example, a
switching action might connect the UUT to a power supply, an instrumen
provide a stimulus, and an instrument to measure a response.

When testing multiple UUTs, connections used to test one UUT position
often need to be reused, with only minor variations that move the
connections from one UUT position to the next, to test additional UUT
positions. To support this need, HP TestExec SL provides a variation on
switching actions for multi-UUT testing. As shown below, you can speci
whether the paths are identical for all UUT positions or unique for each
position.

Having identical paths means the same path is used for all the UUT posi
tested by a given test, while having unique paths means you can specif
separate path for each UUT position.
296

Testing Multiple UUTs
About Multi-UUT Testing
Refer to the example below, which shows a switching action when identical
switching paths are used in a test for multiple UUT positions.

Now refer to the following example, which shows a switching action when
unique switching paths are used, one per UUT position. Notice how a
drop-down list appears that lets you choose which set of paths to view or
edit.
 297

Testing Multiple UUTs
Testing Multiple UUTs

st
Testing Multiple UUTs
The best way to create a multi-UUT testplan is to begin with a testplan that
tests a single UUT position and then expand it by adding UUT positions and
verifying their operation as you add them.

Enabling Multi-UUT Testing

If the HP Throughput Multiplier feature is not already enabled, do the

following to enable multi-UUT testing on your test system:1

1. Use a text editor, such as WordPad in its text mode, to load file
“<HP TestExec SL home>\bin\tstexcsl.ini”.

2. Edit the [Process] section of the initialization file to read:

[Process]
Throughput Multiplier License=<your license number>

For example, if the number on the paper licence you received for the
Throughput Multiplier option was XYZ123, you would enter:

[Process]
Throughput Multiplier License=XYZ123

3. Save the modified file and exit the editor.

Note If you edit the initialization file while HP TestExec SL is running, you mu
exit and restart HP TestExec SL for the change to be seen.

1. You can tell if the feature is enabled by loading a testplan and choosing
Options | Testplan Options in the menu bar. If the Testplan Options box has a
tab labeled Throughput Multiplier, then the feature is enabled.
298

Testing Multiple UUTs
Testing Multiple UUTs

e

ter 1.
Creating the First UUT Position

Creating a UUT Topology Layer for the First UUT

Note Your goal in creating a topology layer for the first UUT position is to define
topology that is readily expandable for additional UUT positions.

Create a UUT topology layer for the first UUT position. Specify UUT node
names that combine a generic UUT name with a specific UUT position, such
as UUT1_Gnd. This makes it easy to add more UUT positions later, such as
UUT2_Gnd and UUT3_Gnd. Other examples of appropriate names for
nodes are:

For UUT1: UUT1_Pin1, UUT1_Load3

For UUT2: UUT2_Pin1, UUT2_Load3

For UUT3: UUT3_Pin1, UUT3_Load3

Note Notice how, with the exception of its unique identifier, each UUT’s list of
nodes is identical to those of the other UUTs. The UUT names must be
identical, including capitalization, except for the number that identifies th
UUT position.

For more information about creating topology layers, see Chapter 4.

Creating & Debugging a Testplan for the First UUT Position

Create a testplan and debug it as you would for a single-UUT testplan.
Because you begin by working with only a single UUT position, for all
practical purposes the initial testplan is a single-UUT testplan.

For more information about creating and debugging testplans, see Chap
 299

Testing Multiple UUTs
Testing Multiple UUTs

 for

em

you
des
n

the

em
Converting the Testplan to a Multi-UUT Version

After you have created a basic testplan for a single UUT position, you must
convert the testplan to a multi-UUT version.

Caution Be sure you want to convert the testplan to a multi-UUT version. Once you
have converted a testplan to a multi-UUT version, you cannot easily convert
it back to a single-UUT version.

Globally Enabling Multi-UUT Testing

1. Choose Options | Testplan Options in HP TestExec SL’s menu bar.

2. Choose the Throughput Multiplier tab.

3. Choose the Add Multiple UUT Features button.

4. In the field to the right of Current number of positions, specify how many
UUT positions you wish to test. For example, if you are creating a test
a multi-UUT panel that contains 4 UUTs, specify “4” here.

5. Choose the Update Position Names button.

6. Edit the default names of the UUT positions as needed by clicking th
in the list under Enable UUT Position(s) and choosing the Edit UUT
Name button to invoke a dialog box that lets you edit their names.

Note Be sure the names of UUT positions that you specify here match those
used when defining the switching topology; e.g., if your topology has no
named UUT1_Gnd and UUT1_Load1, you need a matching UUT positio
named UUT1.

Tip: You can click the name of a UUT position in the list and then use
Move Name Up or Move Name Down button to reposition it.

7. Uncheck the names of all UUT positions but the first one to disable th
for now.
300

Testing Multiple UUTs
Testing Multiple UUTs

y

ow.
8. Choose the OK button.

9. A dialog box appears to inform you that multi-UUT testing has been
enabled. It also asks if you wish to use the recommended default settings
for multi-UUT testing. Follow the instructions and choose the Yes or No
button as appropriate.

Controlling the Flow of Testing

Adding Flow Control Statements

If portions of your testplan require looping or branching based on UUT
positions, add the appropriate flow control statements. For example, you
might surround a series of tests like this:

for UutPosId = UutMinPosId to UutMaxPosId step 1
test Test5
test Test6

next

to have them repeated for all UUT positions. You can evaluate the symbols
described earlier under “Symbols Used by Multi-UUT Testing” in flow
control statements that control the flow of testing.

Adding flow control statements can be an iterative process, and you ma
need to add additional statements as you add new UUT positions.

Specifying Multi-UUT Options for Individual Tests

If desired, you can specify how each test executes with respect to UUT
positions during multi-UUT testing. Do the following for each test:

1. Select the test in the left pane of the Testplan Editor window.

2. Choose the Options tab in the right pane of the Testplan Editor wind
 301

Testing Multiple UUTs
Testing Multiple UUTs
3. Choose the desired option under Throughput Multiplier configuration, as
described below.

Note Given the options above, all tests whose execution depends on the UUT
position must have their option set to “Repeat this test for all UUT
positions” or “Execute this test for the UUT Position defined by
‘UutPosId’.” Otherwise, they will execute only once for the first UUT
position, as if running a single-UUT testplan.

Choose this option... To have the test execute...

Repeat this test for all
UUT Positions

For all possible UUT positions unless:a

• A particular UUT position has exceeded the
Halt on failure count limit for the testplan (as
set on the Execution tab in the Testplan
Options box), in which case the test will not
execute for that UUT position.

• The UutXoutFlags setting for a particular
UUT position is non-zero (Xout or disable
this UUT position), in which case the test will
not execute for that UUT position.

a. The range of possible UUT positions is specified by the values of
symbols UutMinPosId and UutMaxPosId in the System symbol table,
which are read when the testplan begins running. Changes to the values of
these symbols while a testplan is running will be ignored.

Execute this test for the
UUT Position defined
by ‘UutPosId’

Only for the UUT position specified by the
current value of symbol UutPosId in the
SequenceLocals symbol table.

Execute this test once
independent of UUT
positions

Regardless of the UUT position. Test results will
affect the testing results for all UUT positions.
Test results will be added to the report
information acquired during testing. Datalogging
files will be written for all UUT positions.
302

Testing Multiple UUTs
Testing Multiple UUTs

wly

all
Adding UUT Positions to the Testplan

After you have created and debugged the first UUT position and converted
the testplan to a multi-UUT version, do the following steps for each
additional UUT position.

Note Instead of adding many new UUT positions at once, we suggest that you add
new positions one at a time, and then run the testplan to verify that they work
correctly. This methodical approach makes it easier to troubleshoot any
problems that may occur.

Adding a New UUT Position

1. Modify the switching topology by adding node names for each new UUT
position. For each position, specify the generic name of each UUT
position plus its unique prefix aliased to the correct system resources.

2. Choose Options | Testplan Options in the menu bar.

3. Choose the Throughput Multiplier tab.

4. Enable the check box for the next available UUT position in the list under
“Enable - UUT Position(s)”

5. Choose the OK button.

6. Specify the switching paths for any switching actions used by the ne
created UUT position.

You have the option of specifying whether the paths are identical for
UUT positions or unique for each position. As shown below, this is
controlled by an option on the Actions tab in the right pane of the
Testplan Editor window.
 303

Testing Multiple UUTs
Testing Multiple UUTs

u
st

n”

ng

If you choose the “Unique for each UUT position” option, which lets yo
specify an individual set of paths for each UUT position, you also mu
specify which position you are working with, as shown below.

After you have done this, you can specify the paths as usual.

Note As you add UUT positions when using the “Unique for each UUT positio
option, HP TestExec SL automatically creates the appropriate set of new
paths. In many cases, you probably will not need to edit the new paths
because they will be correct as-is.

For more information about specifying switching paths, see “Controlli
Switching During a Test/Test Group“ in Chapter 2.

Running the Testplan & Debugging the New UUT Position

Run the testplan and debug any problems associated with the new UUT
position.
304

Testing Multiple UUTs
The Multi-UUT Operator Interface

e

tory
”.
The Multi-UUT Operator Interface

Note This section assumes you are familiar with the single-UUT operator
interface described in Chapter 1 of the Customizing HP TestExec SL book.

Besides the sample operator interface written in Visual Basic that supports
single-UUT testing, there also is a sample operator interface that supports
multi-UUT testing via the HP Throughput Multiplier feature of HP TestExec
SL. As shown below, the multi-UUT operator interface uses a framed set of
identical controls to convey information about individual UUTs. Each set of
controls shows the UUT’s pass/fail status and serial number plus lets th
user enable/disable the UUT for testing and report generation.

You can find the code for the sample operator interface’s project ìn direc
“<HP TestExec SL home>\samples\visualbasic\operatorinterfaces\multiple
A compiled, executable form of the operator interface resides at
“<HP TestExec SL home>\bin\MultipleOpUi.exe”. Also, you can run the
 305

Testing Multiple UUTs
The Multi-UUT Operator Interface

 in

ce

the
r

n

r
t

ilar
ms
multi-UUT operator interface from the “HP TestExec SL” program group
the Windows Start menu.

Compatibility of Single- & Multi-UUT Operator
Interfaces

Running a Multi-UUT Testplan on a Single-UUT Interface

If you run a multi-UUT-enabled testplan on a single-UUT operator interfa
(such as one derived from the “typicalopui” sample provided with
HP TestExec SL), the testplan will run to completion. However, none of
data for individual UUTs will be visible, nor will there be any control ove
the serial numbers of UUTs or the UutXOut flags that determine which
UUTs are tested. The Report window will show an intermingled collectio
of the streams of report information from individual UUTs.

Running a Single-UUT Testplan on a Multi-UUT Interface

If you run testplan that is not multi-UUT-enabled on a multi-UUT operato
interface, the information for only one UUT will be displayed. The Repor
window will show the report information for that UUT.

Some Differences Between the Modules

In many respects the features of the multi-UUT operator interface are sim
to those of the single-UUT operator interface, including the naming of for
and modules. The main differences are described below.

Form/Module Comments

frmMain Includes additional code to handle multiple UUTs

modAppSpecific Changes to set up the captions for additional
controls used by multi-UUT testing

modConfiguration The feature that allowed automatically running a
testplan after loading the bar code for a testplan has
been disabled
306

Testing Multiple UUTs
The Multi-UUT Operator Interface

ed
e in

s.

 of
Unique Features of the Multi-UUT Operator Interface

Variable mbMultiUutTestplan

A Boolean named mbMultiUutTestplan, which resides in form
frmMain, represents the value of the MultiUutTestplan property read
from the HP TestExec SL Control. If mbMultiUutTestplan is true, the
operator interface manages multiple UUTs; if it is false, it does not.

Shortcuts When Accessing Symbols in Symbol Tables

The multi-UUT operator interface makes use of the special symbols
associated with multi-UUT testing (described earlier under “Symbols Us
by Multi-UUT Testing”). To make it easier to access those symbols, cod
form frmMain in the multi-UUT operator interface provides “wrapper”
functions for returning, and sometimes setting, the values of the symbol
The wrapper functions are:

Potential Differences in the Indexing of Arrays

To increase speed, the multi-UUT operator interface keeps local copies
the UutPosNames and UutXoutFlags symbols, both of which contain
arrays, found in HP TestExec SL’s SequenceLocals symbol table.

The function named ... Is used to access the symbol...

GetUutPosId() UutPosId

GetUutMinPosId() UutMinPosId

GetUutMaxPosId() UutMaxPosId

GetUutSerialNumbers()
SetUutSerialNumber()
SetUutSerialNumbers()

UutSerialNumbers

GetUutPosNames() UutPosNames

GetUutTestingStates() UutTestingStates

GetUutXoutFlags()
SetUutXoutFlag()
SetUutXoutFlags()

UutXoutFlags
 307

Testing Multiple UUTs
The Multi-UUT Operator Interface
Because the lower index of arrays in symbol tables can vary but the control
arrays used in the multi-UUT operator interface have a fixed lower index of
1, converting between the two indexes may be necessary.

Code in HP TestExec SL references arrays associated with multi-UUT
testing in symbol tables via a variable named UutPosId, whereas code in
the multi-UUT operator interface references controls in control arrays via a
variable named UutDisplayPosId. The following functions are
provided in form frmMain to convert between the two kinds of indexes for
these arrays.

Changing the Number of UUT Positions

The sample multi-UUT operator interface has a predefined number of UUT
positions. But what if you wish to change the number of positions? A
function named CreateUutDisplayControlArray in form
frmMain is used to define the control array that contains the set of controls
for each UUT position. If you wish to change the number of UUT positions,
you can modify the way this function operates.

Note The physical layout of the sample multi-UUT operator interface limits the
maximum number of UUT positions to about 30. If you increase the number
beyond this, your UUT position indicators (sets of controls) may become too
small to be easily readable. If so, you may wish to adopt a different strategy
for organizing the indicators, such as a tabbed layout or MDI forms.

UutDisplayPosId() Converts a specified UutPosId to its equivalent
UutDisplayPosId value

UutPosId() Converts a specified UutDisplayPosId to its
equivalent UutPosId value
308

Testing Multiple UUTs
The Multi-UUT Operator Interface

he

g

 talk

 the
 the

e
u
Considerations for Factory Automation

How are Serial Numbers Read?

The multi-UUT operator interface operates such that any valid entry into the
serial number field results in a UUT position being enabled. This lets users
quickly scan bar codes across a group of UUTs without using the keyboard.

What if the Testplan Reads Serial Numbers from UUTs?

There are cases where a testplan reads the serial numbers of UUTs directly
from the UUTs themselves and needs to update the operator interface with
those serial numbers. If so, you can have a SendUserDefinedMessage
action (in “<HP TestExec SL home>\samples\uidebug\actiondefinitions”) in
your testplan send a user-defined message named
ReadUutSerialNumbersFromTestplan whose ID is 50101. When
the operator interface receives this message, it will reread the value of t
UutSerialNumbers symbol for the testplan and update the operator
interface as needed.

For more information about user-defined messages, see “Understandin
User-Defined Messages” in Chapter 1 of the Customizing HP TestExec SL
book.

What if the Testplan Gets the Testing Status from UUTs?

Suppose the testplan attempts to initialize a UUT and finds that it cannot
to it. In that case, the testplan should not test the uninitialized UUT but
should test other UUTs that it was able to initialize. The testing status
indicator—i.e., “flag”—in array UutXOutFlags (in the SequenceLocals
symbol table) for the unresponsive UUT should be set to 1 (no test) and
multi-UUT operator interface should be updated to disable the testing of
defective unit.

Whenever the multi-UUT operator interface needs to be updated with th
status of the UutXoutFlags array for the group of UUTs being tested, yo
can have a SendUserDefinedMessage action (in “<HP TestExec SL
home>\samples\uidebug\actiondefinitions”) in your testplan send a
user-defined message named ReadUutXOutFlagsFromTestplan
whose ID is 50102 .
 309

Testing Multiple UUTs
The Multi-UUT Operator Interface

g
For more information about user-defined messages, see “Understandin
User-Defined Messages” in Chapter 1 of the Customizing HP TestExec SL
book.
310

Index

A
aborting a testplan, 32
action

adding a keyword to, 100
adding a parameter to, 97
adding parameters without modifying

behavior of, 89
adding revision control information

for auditing, 120
adding to a test or test group, 64
creating a switching action, 76
creating in C, 102
creating in HP BASIC for Windows,

151
creating in HP VEE, 139
creating in National Instruments

LabVIEW, 145
debugging actions used to control

message-based instruments, 282
defining, 92
deleting a keyword from, 100
deleting a parameter to, 99
deleting a switching action, 77
deleting a switching path in a

switching action, 78
designing for reusability, 88
DLL style, 103
documenting action definitions, 89
documenting for auditing purposes,

211
example of two action routines in a

single DLL, 134, 135
finding specific text in a list of

actions, 42
languages you can use to create, 87
list of predefined for controlling

message-based instruments, 269
modifying a parameter to, 98
modifying a switching path in a

switching action, 77
overview of creating, 86
predefined provided with HP

TestExec SL, 86
quick search for when inserting into a

test, 181

removing from a test or test group, 68
searching for in a library, 181
See also "C action"
See also "HP BASIC for Windows

action"
See also "HP VEE action"
See also "National Instruments

LabVIEW action"
sharing a variable among, 73
shortcut when inserting into a test or

test group, 66
single-stepping through, 47
step-by-step search for when inserting

into a test, 181
things to know before creating, 86
types of parameters used with, 95
used to control message-based

instruments, 265
using to control instruments via

VXIplug&play, 243
viewing & printing contents of, 39

alias
adding to switching topology, 172
deleting from switching topology, 175
duplicating in switching topology, 178
modifying in switching topology, 173

API functions used to control switching
paths, 115

arithmetic operators in flow control
statements, 17

arrays used with string formatting, 262
assignment operator ("="), 16
auditing, 210

adding revision control information
for actions, 120

controlling the appearance of the
status list on the Document tab,
217

controlling the operation of the
revision editor, 218

documenting testplans, actions &
switching topology, 211

documenting tests, 212
setting up auditing features, 217
viewing or printing information, 212
Index-2

automatically starting an automation
interface, 215

automation interface
automatically printing failure tickets,

215
setting up, 215
specifying the polling interval for

hardware handlers, 216
starting automatically, 215

B
behavior of datalogging, 189

selecting, 192
branching

on a failing test, 21
on a passing test, 21
on an exception, 22

breakpoint in a testplan, 44

C
C action

adding to an existing DLL, 134
creating in a new DLL, 121
data types for parameters in actions

creating using a C compiler, 104
data types for parameters in actions

creating using a C++ compiler, 107
debugging, 136
exception handling, 111
using to control switching paths, 114

code reuse
adding parameters to existing actions

without modifying their behavior,
89

searching for actions & tests to reuse,
180

"comment" statement, 16
comments in a testplan, 16
compatibility

adding parameters to existing actions
without modifying their
behaviour, 89

compiler
using parameter blocks with a C

compiler, 103
using parameter blocks with a C++

compiler, 106
controlling the flow of testing, 13

branching on a failing test, 21
branching on a passing test, 21
branching on an exception, 22
executing a test or test group only

once per testplan run, 23
flow control statements, 13
ignoring a test, 23

creating an action
in C, 102
in HP BASIC for Windows, 151
in HP VEE, 139
in National Instruments LabVIEW,

145
overview, 86

custom tool
adding to HP TestExec SL, 235

D
data type

for parameters in actions created using
a C compiler, 104

for parameters in actions created using
a C++ compiler, 107

datalogging, 188
behavior, 189
configuring for use with a

spreadsheet, 193
contents of a datalogging file, 196
disabling for a test, 192
disabling pass/fail status for a test, 192
format, 189
generating unique names for tests

when looping, 192
importing a datalogging file into

Microsoft Excel, 197
learning the pass/fail limits, 199
managing files, 200
overriding the default test name, 192
Index-3

passing information about test limits,
199

reformatting data that appears in a
spreadsheet, 197

selecting the behavior & format, 192
setting options for entire testplan, 190
setting options for individual test, 191
troubleshooting problems with, 200
using with a spreadsheet, 193
using with Q-STATS programs, 199

debugging
a testplan, 43
actions used to control message-based

instruments, 282
C actions, 136
HP BASIC for Windows actions, 157
HP VEE actions, 142
using "dumpbin" to examine a DLL,

135
using the Watch window to debug a

testplan, 48
defining an action, 92
DLL

adding a C action to, 134
creating a new C action in, 121
how HP TestExec SL locates, 225
managing, 224
minimizing problems with, 228
situations that can cause problems

with, 226
symptoms associated with loading the

wrong, 227
DLL style action, 103

E
"=" (assignment operator), 16
error handling

in C actions, 111
in HP VEE actions, 142

exception
branching on, 22
handling in C actions, 111

expression in flow control statement
using arithmetic operators in, 17
using parentheses in, 18

using relational operators in, 17
external symbol table, 202, 208

creating, 208
linking to, 209
removing link to, 209

F
failure ticket

printing automatically, 215
file

extensions, 221
initialization, 222
managing temporary files, 228
recommended locations, 223

file extensions, 221
fine-tuning a testplan, 52
fixture layer in switching topology

defining, 168
FixtureID symbol in System symbol

table, 204
flags in a testplan, 43
flow control statement, 13

"for...in", 15
"for...next", 14
"if...then...else", 14
"loop", 15
finding specific text in, 42
inserting into a testplan, 19
interacting with, 20
rules for using, 19
syntax for accessing symbols from,

20, 206
using arithmetic operators in, 17
using parentheses in, 18
using relational operators in, 17

"for...in" statement, 15
format of datalogging, 189

selecting, 192
formatted strings. See "string

formatting"
"for...next" statement, 14
Index-4

G
global variable

using in a testplan, 33
whose scope is a sequence, 34
whose scope is the testplan, 33

H
hardware handler

specifying the polling interval for, 216
HP BASIC for Windows

related files that are installed, 152
HP BASIC for Windows action

creating, 151
creating a server program for, 153
debugging, 157
defining, 153
example, 156
restrictions on parameter passing, 152

HP TestExec SL
adding custom tools to, 235
file & directory structure, 220
searching for actions & tests to reuse,

180
using with VXIplug&play, 241

HP VEE action
creating, 139
debugging, 142
defining, 140
error handling, 142
example, 140
executing on a remote system, 143
restrictions on parameter passing, 139
specifying the geometry for windows

in which actions appear, 143

I
I/O operations

viewing as the testplan runs, 28
"if...then...else" statement, 14
ignored test

using with variants, 23
ignoring a test during testplan

execution, 23
initialization file, 222

instrument
using actions to control message-

based instruments, 265
instruments

controlling via VXIplug&play, 243
interactive controls & flags in a

testplan, 43

K
keyword, 100, 180

adding to an action, 100
associated with actions, 90
deleting from an action, 100

L
LabVIEW. See "National Instruments

LabVIEW"
languages you can use to create actions,

87
layer in switching topology

defining the fixture layer, 168
defining the system layer, 166
defining the UUT layer, 170
names of files, 160

learning pass/fail limits for datalogging,
199

library
saving a test definition in, 69
searching for items in, 180
specifying the search path for, 184
strategies for searching, 183
using to manage tests & actions, 180

limits
parameter types compatible with

limits checking, 97
specifying for a test, 67

limits checker
specifying which to use, 68

listing of testplans & system
information

finding specific text in, 41
generating, 40
printing, 41

Listing window, 39
Index-5

"loop" statement, 15

M
master keyword, 180

adding to the list, 101
deleting from the list, 101

maximizing throughput in testplans, 53
message-based instrument

using actions to control, 265
module

adding to switching topology, 176
deleting from switching topology, 178
duplicating in switching topology, 178
modifying in switching topology, 177

ModuleType symbol in System symbol
table, 204

moving a testplan, 58
using search paths to improve testplan

portability, 187
multi-UUT testing. See "Throughput

Multiplier"

N
National Instruments LabVIEW, 145

creating an action in, 145
defining an action in, 148
example of an action, 149
list of custom VIs provided by HP,

147
restrictions on parameter passing in

actions, 146
setting interface options in actions,

150
node

in switching topology, 164
specifying which character separates

adjacent nodes, 167

O
On Fail Branch To feature, 22
operator interface

multi-UUT used with Throughput
Multiplier, 305

registering a testplan for use with, 36

registering a UUT for use with, 36
setting up, 215
specifying the association between

testplans & UUTs, 36
warning about flags left in testplans,

59
OperatorName symbol in System

symbol table, 204
optimizing the reliability of testplans,

52
option

specifying global options for a
testplan, 35

P
parameter

adding to a test or test group, 62
adding to an action, 97
deleting a parameter to an action, 99
modifying a parameter to an action, 98
modifying for a test or test group, 62
parameter types compatible with

limits checking, 97
removing from a test or test group, 63
restrictions on passing in HP BASIC

for Windows, 152
restrictions on passing in HP VEE,

139
specifying for a test or test group, 62,

66
types used in actions, 95
viewing for actions in a test or test

group, 67
parameter block

using with a C compiler, 103
using with a C++ compiler, 106

parameter replacement in formatted
strings, 254

parentheses in flow control statements,
18

pass/fail status of a test, controlling
during datalogging, 192

password
changing, 231

plug&play. See "VXIplug&play"
Index-6

polling interval for a hardware handler,
216

predefined actions provided with HP
TestExec SL, 86

preferred names in switching topology,
164

order of precedence, 165
profiler

running, 55
setting up prior to use, 54
using to optimize testplans, 54
viewing results in a spreadsheet, 56
viewing results in HP TestExec SL, 55
viewing results in Microsoft Excel, 56

Q
Q-STATS program

using datalogging with, 199
quick search for actions, 181

R
relational operators in flow control

statements, 17
reliability

optimizing testplans for, 52
replaceable parameters in formatted

strings, 254
Report window

enabling & disabling, 28
specifying what appears in, 28

results
passing between tests or test groups,

71
reusable code

designing actions for reusability, 88
RunCount symbol in System symbol

table, 204
running

an entire testplan, 25
selected tests in a testplan, 26

S
search path

removing from list, 186

specifying for libraries, 184
specifying system-wide, 185
specifying testplan-specific, 186
using to improve testplan portability,

187
security

access privileges listed by group, 230
access to system resources, 230
changing a password, 231
controlling, 229
customizing the settings, 231
default settings, 229
user groups, 230

separator character
between adjacent nodes in the

switching topology, 167
sequence

finding specific text in, 42
SequenceLocals symbol table, 202
SerialNumber symbol in System

symbol table, 204
server program for HP BASIC for

Windows actions, 153
single-stepping

through a test, 46
through a testplan, 46
through actions in a test, 47

Skip flag in a testplan, 44
skipping a test, 44
specifying the search path for libraries,

184
state

using to store switching data, 117
step-by-step search for actions, 181
stopping a testplan, 31
stream of trace information, 31
string formatting

data types supported for replaceable
parameters in, 259

error values returned when formatting
fails, 260

how it works, 258
overview, 254
types of operations, 255
Index-7

updating a string from its replaceable
parameters, 255

updating replaceable parameters from
a string, 256

use of replaceable parameters in, 254
uses for, 264
using with arrays, 262
what happens if it fails, 260

switching
controlling during a test, 75
controlling with a C action, 114
names of files used in topology layers,

160
preferred names in topology, 164
watching nodes as tests execute, 50

switching action
creating, 76
deleting, 77
deleting a switching path in, 78
modifying a switching path in, 77

switching path
API for controlling, 115
controlling with a C action, 114
deleting, 78
modifying, 77

switching topology
adding a module, 176
adding a wire, 174
adding an alias, 172
creating a topology layer, 171
defining the fixture layer, 168
defining the system layer, 166
defining the UUT layer, 170
deleting a module, 178
deleting a wire, 176
deleting an alias, 175
documenting for auditing purposes,

211
duplicating an alias, wire, or module,

178
locations of files, 6
modifying a module, 177
modifying a wire, 175
modifying an alias, 173
nodes in, 164

overview of defining, 160
preferred names, 164
specifying the location of the system

layer, 214
specifying the location of topology

files, 6
specifying which files to use, 35

Switching Topology Editor
using, 171

switching topology layer
specifying the search path for, 184

symbol
adding to a symbol table, 207
deleting in a symbol table, 208
examining in a symbol table, 206
in external symbol table, 208
modifying in a symbol table, 207
syntax for accessing from flow control

statements, 20, 206
symbol table, 202

adding a symbol, 207
creating an external, 208
deleting a symbol, 208
examining, 206
external, 202, 208
linking to an external, 209
list of, 202
list of predefined symbols in System

symbol table, 204
modifying a symbol in, 207
removing link to an external, 209
SequenceLocals, 202
specifying the search path for, 184
syntax for accessing symbols from

flow control statements, 20, 206
System, 202
TestPlanGlobals, 202
TestStepLocals, 202
TestStepParms, 202
watching symbols as tests execute, 49,

51
system administration

controlling system security, 229
initialization files, 222
managing temporary files, 228
Index-8

recommended locations for files, 223
setting up a system, 214
setting up an operator/automation

interface, 215
setting up auditing features, 217
specifying the default variant for new

testplans, 214
specifying the location of the system

layer for switching topology, 214
standard directories, 220
standard file extensions, 221

system layer in switching topology
defining, 166

System symbol table, 202
list of predefined symbols in, 204

system-wide search path, 185

T
temporary file, 228
test

adding a new test to a testplan, 7
adding a parameter to, 62
adding actions to, 64
adding an existing test to a testplan, 8
branching on a failing, 21
branching on a passing, 21
breakpoint, 44
copying across testplans, 11
copying within a testplan, 11
documenting for auditing purposes,

212
examining or modifying, 9
executing only once per testplan run,

23
ignoring during testplan execution, 23
modifying a parameter for, 62
moving across testplans, 10
moving within a testplan, 9
passing results between, 71
removing a parameter from, 63
removing an action from, 68
running selected tests in a testplan, 26
saving a test definition in a library, 69
searching for in a library, 182

sharing a variable among the actions
in, 73

single-stepping through, 46
skipping, 44
specifying limits for, 67
specifying parameters for, 66
specifying when using variants, 79
using to control switching, 75
viewing & printing contents of, 39
viewing parameters for actions in, 67
viewing the test execution details, 81
watching while debugging, 48

test definition
saving in a library, 69
specifying the search path for, 184

Test Execution Details window
viewing, 81

test group
adding a parameter to, 62
adding actions to, 64
adding to a testplan, 7
copying across testplans, 11
copying within a testplan, 11
examining or modifying, 9
executing only once per testplan run,

23
modifying a parameter for, 62
moving across testplans, 10
moving within a testplan, 9
passing results between, 71
removing a parameter from, 63
removing an action from, 68
sharing a variable among the actions

in, 73
specifying parameters for, 66
specifying when using variants, 79
viewing & printing contents of, 39
viewing parameters for actions in, 67

test library
saving a test definition in, 69

test limits
parameter types compatible with

limits checking, 97
specifying, 67
Index-9

TestInfoCode symbol in System symbol
table, 204

TestInfoString symbol in System
symbol table, 204

testplan
aborting, 32
adding a new test or test group, 7
adding a variant, 37
adding an existing test, 8
branching on a failing test, 21
branching on a passing test, 21
branching on an exception, 22
comments in, 16
controlling the flow of testing, 13
creating, 2
debugging, 43
deleting a variant from, 38
documenting for auditing purpose,

211
examining or modifying a test or test

group, 9
executing a test or test group only

once per testplan run, 23
fine-tuning, 52
ignoring a test in, 23
interactive controls & flags, 43
loading, 25
maximizing throughput, 53
moving, 58
moving a test/test group across

testplans, 10
moving a test/test group within a

testplan, 9
optimizing reliability of, 52
renaming a variant, 37
running, 25, 26
running repetitively, 52
single-stepping through, 46
specifying global options for, 35
specifying switching topology layers

for, 6
stopping, 31
using global variables in, 33
using search paths to improve testplan

portability, 187

using tests and test groups with
variants, 79

using variants in, 37
viewing & printing contents of, 39
viewing results while running, 27

TestPlanGlobals symbol table, 202
testplan-specific search path, 186
TestStationID symbol in System symbol

table, 204
TestStatus symbol in System symbol

table, 204
TestStepLocals symbol table, 202
TestStepParms symbol table, 202
throughput

maximizing in testplans, 53
Throughput Multiplier, 287

adding UUT positions, 303
converting the testplan to a multi-

UUT version, 300
creating the first UUT position, 299
effects on breakpoints & single-

stepping, 295
effects on datalogging, 295
effects on reporting, 295
effects on switching, 296
effects on testplan listings, 295
enabling, 298
example of a multi-UUT testplan, 292
list of symbols used by, 293
multi-UUT operator interface, 305
specifying multi-UUT options for

individual tests, 301
tool

adding custom tools to HP TestExec
SL, 235

topology. See "switching topology"
Trace flag in a testplan, 44
Trace window

default stream of trace information, 31
enabling & disabling, 29
specifying what appears in, 30
specifying which stream of trace

information to view, 31
specifying which tests are traced, 30
using to view I/O operations, 28
Index-10

tracing I/O operations as the testplan
runs, 28

tracking software revisions, 210
troubleshooting

minimizing problems with DLLs, 228
situations that can cause problems

with DLLs, 226
symptoms associated with loading the

wrong DLL, 227

U
updating a string from its replaceable

parameters, 255
updating replaceable parameters from a

string, 256
user

adding a new, 232
adding a new group, 234
deleting, 233
modifying a group, 234
modifying an existing, 233
modifying privileges, 233

UUT layer of switching topology
defining, 170

UutPosId symbol, 294

V
variable

sharing among actions in a test or test
group, 73

using a global variable whose scope is
a sequence, 34

using a global variable whose scope is
the testplan, 33

variant
adding to a testplan, 37
deleting, 38
renaming, 37
rules when copying tests/test groups

across testplans, 10, 12
specifying the default for new

testplans, 214
specifying variations on tests and test

groups when using, 79

using ignored tests with, 23
VEE action. See "HP VEE action"
VI

list of custom National Instruments
LabVIEW VIs provided by HP,
147

VXIplug&play
overview, 240
using actions to control instruments

via VXIplug&play, 243
using with HP TestExec SL, 241

W
Watch window

inserting a switching node into, 50
inserting a symbol into, 49, 51
removing items from, 51
using as a debugging aid, 48

wire
adding to switching topology, 174
deleting from switching topology, 176
duplicating in switching topology, 178
modifying in switching topology, 175
Index-11

	1 Working With Testplans
	A Suggested Process for Creating a Testplan
	Preparing to Write the Testplan
	Writing the Testplan

	To Create a Testplan
	To Specify Switching Topology Layers for a Testplan
	Using Tests & Test Groups in Testplans
	To Add a New Test/Test Group
	To Add an Existing Test
	To Examine or Modify a Test/Test Group
	To Move a Test/Test Group Within a Testplan
	To Move a Test/Test Group Across Testplans
	To Copy a Test/Test Group Within a Testplan
	To Copy a Test/Test Group Across Testplans
	To Delete a Test/Test Group

	Controlling the Flow of Testing
	Using Flow Control Statements
	Which Flow Control Statements are Available?
	What is the Syntax for Expressions?
	Using Arithmetic Operators
	Using Relational Operators
	Using Parentheses

	What Are the Rules for Using Flow Control Statements?
	To Insert a Flow Control Statement into a Testplan
	Interacting with Flow Control Statements

	To Branch on a Passing Test
	To Branch on a Failing Test
	To Branch on an Exception
	To Execute a Test/Test Group Once Per Testplan Run
	To Ignore a Test

	Running a Testplan
	To Load a Testplan
	To Run an Entire Testplan
	To Run Selected Tests in a Testplan
	Viewing What Happens as a Testplan Runs
	Using the Report Window to Monitor Results
	To Enable/Disable the Report Window
	To Specify What Appears in the Report Window

	Using the Trace Window to Monitor I/O Operations
	To Enable/Disable the Trace Window
	To Specify Which Tests are Traced
	To Specify What Appears When Tests are Traced

	To Stop a Testplan
	To Abort a Testplan

	Other Tasks Associated with Testplans
	Using Global Variables in Testplans
	To Use a Global Variable Whose Scope is the Testplan
	To Use a Global Variable Whose Scope is a Sequence

	To Specify the Global Options for a Testplan
	To Specify Which Topology Files to Use
	Using Testplans & UUTs with an Operator Interface
	To Register a Testplan for an Operator Interface
	To Register a UUT for an Operator Interface

	Using Variants in Testplans
	To Add a Variant to a Testplan
	To Rename a Variant in a Testplan
	To Delete a Variant from a Testplan

	Examining Testplans & System Information
	Overview
	Which Kinds of Information Can I Examine?
	To List Testplans & System Information
	To Print Listings of Testplans & System Information
	To Find Specific Text in Listings
	To Find Specific Text in Sequences & Lists of Actions

	Debugging Testplans
	Using Interactive Controls & Flags
	Single-Stepping in a Testplan
	Single-Stepping Through Tests
	Overview
	To Single�Step Through the Tests in a Testplan
	To Cancel Single�Stepping Through the Tests in a Testplan

	Single-Stepping Through Actions
	Overview
	To Single�Step Through Actions

	Using the Watch Window to Aid Debugging
	Overview
	To Insert a Symbol into the Watch Window
	To Insert a Switching Node into the Watch Window
	To Insert an Instrument into the Watch Window
	To Remove an Item from the Watch Window

	Fine�Tuning Testplans
	Optimizing the Reliability of Testplans
	Optimizing the Throughput of Testplans
	Suggested Ways to Make Testplans Run Faster
	Using the Profiler to Optimize Testplans
	To Set Up the Profiler
	To Run the Profiler
	To View Profiler Results in HP�TestExec SL
	To View Profiler Results in a Spreadsheet

	Moving a Testplan

	2 Working With Tests & Test Groups
	Specifying Parameters for a Test/Test Group
	To Add a Parameter to a Test/Test Group
	Modifying a Parameter for a Test/Test Group
	To Remove a Parameter from a Test/Test Group

	Specifying Actions for a Test/Test Group
	To Add an Action to a Test/Test Group
	To Specify Parameters for Actions in a Test/Test Group
	To View Parameters for Actions in a Test/Test Group
	To Specify the Limits for a Test
	To Remove an Action from a Test/Test Group

	To Save a Test Definition in a Library
	To Pass Results Between Tests/Test Groups
	To Share a Variable Among Actions in a Test/Test Group
	Controlling Switching During a Test/Test Group
	Overview of Creating a Switching Action
	To Create a Switching Action
	To Delete a Switching Action
	To Modify a Switching Path in a Switching Action
	To Delete a Switching Path in a Switching Action

	Specifying Variations on Tests/Test Groups When Using Variants
	Overview
	To Specify a Test/Test Group’s Characteristics for Each Variant

	Viewing the Test Execution Details
	Overview
	To View the Test Execution Details

	3 Working With Actions
	Things to Know Before Creating Actions
	How Do I Create Actions?
	Which Languages Can I Use to Create Actions?
	Improving the Reusability of Actions
	Designing for Reusability
	Documenting Your Actions
	Choosing Names for Actions
	Entering Descriptions for Actions
	Entering Descriptions for Parameters
	Choosing Keywords for Actions

	To Define an Action
	Using Parameters with Actions
	Types of Parameters Used With Actions
	To Add a Parameter to an Action
	To Modify a Parameter to an Action
	To Delete a Parameter to an Action

	Using Keywords with Actions
	To Add a Keyword to an Action
	To Delete a Keyword from an Action
	To Add a Master Keyword to the List
	To Delete a Master Keyword from the List

	Creating Actions in C
	Overview of the Process
	Writing C Actions
	Using Parameter Blocks With a C Compiler
	Using Parameter Blocks With a C++ Compiler

	Exception Handling in C Actions
	Using C Actions to Control Switching Paths
	Overview
	Using API Functions to Control Switching Pathss
	Using States to Store Switching Data

	Adding Revision Control Information for Actions
	Example of Creating a C Action in a New DLL
	Defining the Action
	Specifying the Development Environment Options
	Specifying the Path for Libraries
	Specifying the Path for Include Files

	Creating a New DLL Project
	Specifying the Project Settings
	Writing Source Files for the Action Code
	Adding Source Files to the Project
	Verifying the Project’s Contents
	Choosing Which Configuration to Build
	Building the Project
	Copying the DLL to Its Destination Directory
	Overview
	Creating a Custom Tool to Copy the DLL
	Using the Custom Tool to Copy the DLL

	Example of Defining a C Action
	Adding a C Action to an Existing DLL
	Debugging C Actions

	Creating Actions in HP VEE
	Restrictions on Parameter Usage in HP VEE
	Defining an HP VEE Action
	Example of an HP VEE Action
	Debugging HP VEE Actions
	Error Handling in HP VEE
	Controlling the Geometry of HP�VEE Windows
	Executing HP VEE Actions on a Remote System

	Creating Actions in National Instruments LabVIEW
	Related Files
	Restrictions on Parameter Passing
	Defining a National Instruments LabVIEW Action
	Example of a National Instruments LabVIEW Action
	Setting Interface Options for National Instruments LabVIEW

	Creating Actions in HP BASIC for Windows
	Related Files
	Restrictions on Parameter Usage in HP BASIC for Windows
	Defining an HP BASIC for Windows Action
	Creating an HP BASIC for Windows Server Program
	Example of an HP BASIC for Windows Action
	Debugging HP BASIC for Windows Actions

	4 Working with Switching Topology
	Defining the Switching Topology
	Overview
	Matching Physical Hardware to Logical Names
	Where Do the Names of Switching Paths Come From?
	Using Aliases to Simplify the Names of Switching Paths
	When Should I Specify Wires?
	What Happens If a Node Has Multiple Names?
	How Do I Specify the Preferred Name for a Node?

	Defining the System Layer
	Defining the Fixture Layer
	Defining the UUT Layer
	Using the Switching Topology Editor
	To Create a Topology Layer
	Using Aliases
	To Add an Alias
	To Modify an Alias
	To Delete an Alias

	Using Wires
	To Add a Wire
	To Modify a Wire
	To Delete a Wire

	Using Modules
	To Add a Module
	To Modify a Module
	To Delete a Module

	Duplicating an Alias, Wire, or Module

	5 Working with Libraries, Datalogging, Symbol Tables, & Auditing
	Using Test & Action Libraries
	How Keywords Simplify Finding Items in Libraries
	Searching for Items in Libraries
	Searching for Actions in a Library
	Searching for Tests in a Library

	Strategies for Searching Libraries
	Specifying the Search Path for Libraries
	To Specify System�Wide Search Paths for Libraries
	To Specify Testplan�Specific Search Paths for Libraries
	To Remove a Path from the List of Search Paths

	Using Search Paths to Improve Testplan Portability

	Using Datalogging
	What Happens During Datalogging?
	What is the Behavior & Format for Logged Data?
	Controlling How Datalogging Works
	To Set the Datalogging Options for an Entire Testplan
	To Change the Datalogging Options for an Individual Test
	To Select the Datalogging Behavior and Format

	Using Datalogging with a Spreadsheet
	To Configure Datalogging for Use With a Spreadsheet
	What’s Inside a Datalogging File Formatted for Spreadsheets?
	How Does the Data Appear in a Spreadsheet?
	Why You May Need to Reformat the Data
	To Import a Datalogging File into Microsoft Excel 97

	Using Datalogging with Q-STATS Programs
	To Set the Learning Feature & Pass Limits Information
	Restrictions on the Names of Tests

	Managing Datalogging Files
	Troubleshooting Problems with Datalogging

	Using Symbol Tables
	About Symbol Tables
	Predefined Symbols in the System Symbol Table
	How Symbols Are Defined in Flow Control Statements
	Programmatically Interacting with Symbols
	To Examine the Symbols in a Symbol Table
	To Add a Symbol to a Symbol Table
	To Modify a Symbol in a Symbol Table
	To Delete a Symbol from a Symbol Table
	Using External Symbol Tables
	To Create an External Symbol Table
	To Link to an External Symbol Table
	To Remove a Link to an External Symbol Table

	Using Auditing
	To Document Testplans, Actions & Switching Topology
	To Document Tests
	To View or Print Auditing Information

	6 System Administration
	System Setup
	Specifying the Location of the System Topology Layer
	Specifying the Default Variant for a New Testplan
	Setting Up an Operator or Automation Interface
	Overview
	Setting Up an Automation Interface to Start Automatically
	Starting an Automation Interface Created in Visual�Basic
	Starting an Automation Interface Created in Visual�C++

	Setting Up Automatic Printing of Failure Tickets
	Specifying the Polling Interval for Hardware Handlers

	Setting Up the Auditing Features
	Controlling the Appearance of the Status List
	Controlling the Operation of the Revision Editor

	Directories and Files
	Standard Directories
	Standard File Extensions
	Initialization Files
	Recommended Locations for Files
	Managing DLLs
	How HP TestExec SL Searches for DLLs
	Situations That Can Cause Problems With DLLs
	Symptoms Associated with Loading the Wrong DLL
	Minimizing the Problems with DLLs

	Managing Temporary Files

	Controlling System Security
	Using the Default Security Settings
	User Groups
	System Resources
	Group Access Privileges

	Customizing Security Settings
	To Change a Password
	To Add a New User
	To Modify an Existing User
	To Delete an Existing User
	To Modify a User's Privileges
	To Add a New Group of Users
	To Modify an Existing Group of Users

	Adding Custom Tools to HP TestExec SL
	Syntax for Adding Custom Tools
	To Add Entries to the Tools Menu

	7 Working with VXIplug&play Drivers
	What is VXIplug&play?
	How Do HP TestExec SL & VXIplug&play Work Together?
	How Do Actions Control Instruments via VXIplug&play?
	To Control a VXIplug&play Instrument from an Action
	Configuring HP�TestExec SL to Use VXIplug&play Instruments
	Creating the Action
	Using the Action in a Test

	Beyond VXIplug&play

	8 Using String Formatting
	What is a Formatted String?
	The Two Types of Formatting Operations
	Updating a String from its Replaceable Parameters
	Updating Replaceable Parameters from a String

	How Does String Formatting Work?
	Which Data Types are Supported for Replaceable Parameters?
	What Happens if “Update Parameters from String” Fails?
	Notes About String Formatting
	How are Formatted Strings Useful?

	9 Using Actions to Control Message�Based Instruments
	Overview of Controlling Message�Based Instruments
	Why Use Actions to Control Message�Based Instruments?
	When Can I Use Actions to Control Message�Based Instruments?

	Using Actions to Control Message�Based Instruments
	Adding the Instrument to the Switching Topology
	Which Actions Does HP TestExec SL Provide?
	Choosing Which Action to Use
	Setting Up the Action
	Copying the Action Definition
	Customizing the Action Definition
	Why Did You Customize the Action Definition?
	Using the Action in a Testplan
	What if the Instrument Returns a Response?
	Choosing Which Action to Use
	Setting Up the Action
	Customizing the Action Definition

	Debugging Actions That Control Message�Based Instruments

	Notes for Advanced Users

	10 Testing Multiple UUTs
	About Multi�UUT Testing
	Why Test Multiple UUTs?
	What Makes Multi�UUT Testing Faster?
	How Does HP TestExec SL Test Multiple UUTs?
	What Must You Do to Test Multiple UUTs?
	Example of a Multi�UUT Testplan
	Symbols Used by Multi-UUT Testing
	More About UutPosId
	Multi�UUT Effects on Datalogging
	Multi�UUT Effects on Reporting
	Multi�UUT Effects on Testplan Listings
	Multi�UUT Effects on Breakpoints & Single�Stepping
	Multi�UUT Effects on Switching

	Testing Multiple UUTs
	Enabling Multi�UUT Testing
	Creating the First UUT Position
	Creating a UUT Topology Layer for the First UUT
	Creating & Debugging a Testplan for the First UUT Position

	Converting the Testplan to a Multi�UUT Version
	Globally Enabling Multi�UUT Testing
	Controlling the Flow of Testing
	Adding Flow Control Statements
	Specifying Multi�UUT Options for Individual Tests

	Adding UUT Positions to the Testplan
	Adding a New UUT Position
	Running the Testplan & Debugging the New UUT Position

	The Multi�UUT Operator Interface
	Compatibility of Single� & Multi�UUT Operator Interfaces
	Running a Multi�UUT Testplan on a Single�UUT Interface
	Running a Single�UUT Testplan on a Multi�UUT Interface

	Some Differences Between the Modules
	Unique Features of the Multi�UUT Operator Interface
	Variable mbMultiUutTestplan
	Shortcuts When Accessing Symbols in Symbol Tables
	Potential Differences in the Indexing of Arrays

	Changing the Number of UUT Positions
	Considerations for Factory Automation
	How are Serial Numbers Read?
	What if the Testplan Reads Serial Numbers from UUTs?
	What if the Testplan Gets the Testing Status from UUTs?

	Index

