HP TestExec SL

Using HP TestExec SL

Notice

The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not beliable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights L egend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rightsin Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.SA.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forthin FAR 52.227-19 (c) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
dterationsis expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporation.

Q-STATS Il is a trademark of Derby Associates, International.

Printing History
E1074-90000 — Software Rev. 1.00 — First printing - August, 1995
E1074-90005 — Software Rev. 1.50 — Rev. A - March, 1996

Note The documentation expanded into a multi-volume set of books at Rev. B.

E1074-90008 — Software Rev. 1.51 — Rev. B - June, 1996
E2011-90012 — Software Rev. 2.00 — Rev. C - January, 1997
E2011-90015 — Software Rev. 2.10 — Rev. D - May, 1997
E2011-90019 — Software Rev. 3.00 — Rev. E - January, 1998
E2011-90023 — Software Rev. 4.00 — Rev. F - August, 1999

About This Manual

This manual describes how to do tasks of interest to most users of
HP TestExec SL.

Conventions Used in this Manual

Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions
Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

Items you must specify are italicized and enclosed by angle brackets, like
this:

<filename.txt>
which you might replace by typing:
MyFil e. txt

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—iMyfFuncti on() —
that do not show the function’s parameters.

Most programming examples use the C++ convention for comments, which
is to begin commented lines with two slash characters, like this:

/1 This is a coment
C++ compilers also will accept the C convention of:
/* This is a comrent */

The C++ convention is used here simply because it results in shorter line
lengths, which make examples fit better on a printed page. If you are using a
C-only compiler, be sure to follow the C convention.

Contents

1. Working With Testplans

A Suggested Process for Creating a Testplan.........cccccevcevveeveeveeseecnenn, 2
Preparing to Writethe Testplan..........cccceveevee v 2
Writing the TeSIPIaNccve i s 4

TOCreate aTESIPIAN ..o e 5

To Specify Switching Topology Layersfor aTestplan..........c.cccceevvenenee. 6

Using Tests & Test Groups in TESIPIaNS........cccevveeeeeiiecieiie e 7
TOAdd aNew TeS/TESt GIOUP ...cocveirerieeriee e sieesiee e e seeseesreesreeeeas 7
TOAdd an EXiStiNg TESE.....cceeieiieciecee et 8
To Examine or Modify a Test/Test GroUPccovvevveereeieeeriesieeieeeneas 9
To MoveaTest/Test Group WithinaTestplan.........c.coceveenvieienene 9
ToMoveaTest/Test Group Across Testplans..........cocceeeeevrerienene 10
To Copy aTest/Test Group WithinaTestplancccccvevveveerienene. 11
To Copy aTest/Test Group Across Testplans.........ccceeveevcieneennnne 11
ToDelete aTest/TESt GIrOUPcccveevieeiieerieeieeieerteesteesteesteesreenree e 12

Controlling the Flow of TESHINGccceevieiiieicie e 13
Using Flow Control Statements...........ccoveeverernenieneneesese e 13

Which Flow Control Statements are Available?............cccceee. 14
What isthe Syntax for EXpressions?...........ccoeeevrieneneesnesenennns 16
Using Arithmetic Operators.........cccoveveeveeveesiecieeseeseesieenneas 17

Using Relational Operators.........oceuveeieeiieieesecieeseese e 17

UsiNg Parenth@ses.........cooe e 18

What Are the Rules for Using Flow Control Statements?........... 19
To Insert aFlow Control Statement into a Testplan 19
Interacting with Flow Control Statements...........cccccoveveeveervenene. 20
ToBranch on aPassing TESE.......ccevvevieiieiieesece et 21
ToBranchonaFailing TESt........cccciiivievicie e 21
To Branch on an EXCEPLioN.cccccvevieviciecceceecee et 22
To Execute a Test/Test Group Once Per Testplan Run..................... 23
TOIGNOrE AT Ottt e s e e e s e s 23

RUNNING @ TESIPIANcceicece et 25
ToLoad aTestplan.......ccccoveveeieeiiece et 25
ToRun an Entire Testplan........ccccoevievieieeceesece et 25
To Run Selected TestsinaTestplan ... 26

Contents-1

Viewing What Happensasa Testplan RUNS.............cccoveeeieciecieenens 27

Using the Report Window to Monitor Results.............cccccevveneeee. 27

To Enable/Disable the Report Windowccccccvevvevcicieennene 28

To Specify What Appearsin the Report Window 28

Using the Trace Window to Monitor 1/O Operations.................. 28

To Enable/Disable the Trace Window...........ccccccevvecieiesieenen. 29

To Specify Which Testsare Traced.........ccccvevvveieecieiesieenens 30

To Specify What Appears When Tests are Traced................. 30
TOSIOP ATESIPIAN.o 31
TOADOrt ATESIPIAN.....c..eecieciceeeece e e 32
Other Tasks Associated with Testplans.........ccccccevviieececie e 33
Using Global Variablesin Testplans.........ccooovereiiininenenecnesens 33
To UseaGlobal Variable Whose Scopeisthe Testplan.............. 33
To Use aGlobal Variable Whose Scope is a Sequence............... 34
To Specify the Global Optionsfor aTestplan..........cccccceeviveveiieennene 35
To Specify Which Topology Filesto Use........cccoccvevveieivecve e 35
Using Testplans & UUTswith an Operator Interface....................... 36
To Register a Testplan for an Operator Interface...........cccceev.e.. 36
To Register aUUT for an Operator Interface........cccccovvevvvennen. 36
Using VariantSin TeStPlanScceoverireieieineseseeesesie e 37
ToAddaVarianttoaTestplan.........ccceeeeveiieeiiee e, 37
ToRenameaVariantinaTestplan.........ccccceveevieeicc e cceceecenn, 37
ToDeeteaVariant fromaTestplan........ccccccoevieevcevievceneecnnn, 38
Examining Testplans & System Informationcc.cccccevevieecceecreenene, 39
OVEINVIBW ...ttt sttt se et e e esresneese e senneas 39
Which Kinds of Information Can | EXaming?ccoceeveveveinnenens 39
ToList Testplans & System Information.............ccceeveveiieeveccieennene 40
To Print Ligtings of Testplans & System Information...................... 41
To Find Specific Text in LiStingS......ccccoeviviiieveiieesecceere e 41
To Find Specific Text in Sequences & Listsof Actions................... 42
Debugging TESIPIANS........ccoeiviieieiee et 43
Using Interactive ControlS & Flags.........ccccuvviiiininineieccseses 43
Single-Stepping in aTestplancccccveceeiieie v 46
Single-Stepping Through TESES.....ccoveiievie e 46
OVEIVIBW ...ttt sttt sne 46

To Single-Step Through the Testsin a Testplan 46

To Cancd Single-Stepping Through the Testsin a Testplan . 47

Contents-2

Contents

Single-Stepping Through ACLioNS.........ccccoociieeiieecee e 47
OVEIVIBIW ...ttt s 47

To Single-Step Through ACtionsS........ccccovveeveve i, 48

Using the Watch Window to Aid Debugging..........ccccovvvreiinierienee 48
OVEINVIBIW ...ttt ettt be e s aeeebee st eneas 48

To Insert a Symbol into the Watch Window............cccccoveevenennee. 49

To Insert a Switching Node into the Watch Window 50

To Insert an Instrument into the Watch Window......................... 51

To Remove an Item from the Watch Windowccccceevaee. 51
Fine-Tuning TeSIPIaNSooiiiriiiieee e 52
Optimizing the Reliability of Testplans.........ccccccvveveve v, 52
Optimizing the Throughput of Testplans............cccceeveevieeveeneevieenee. 53
Suggested Waysto Make Testplans Run Fastercccccveeuneee. 53

Using the Profiler to Optimize Testplans.........cccccooevievieceennenne, 54

To Set Up the Profiler ... 54

To RUNthe Profilerccovvveeeece e 55

To View Profiler Resultsin HP TestExec SL.........ccccovevnnee. 55

To View Profiler Resultsin a Spreadshegtccceeeevvenene 56

KoY T oo = B == o] = o PR 58

2. Working With Tests & Test Groups

Specifying Parametersfor a Test/Test Group........ccveveveevesieeievesiesvene 62
To Add aParameter to a Test/Test GroupP.....c.cvceeveeeceeviesiesiee e 62
Modifying a Parameter for a Test/Test Groupcceeeeeeeevecieennns 62
To Remove a Parameter from a Test/Test Group.........cccveveveerieennenns 63

Specifying Actionsfor a Test/Test GIroUPccccovvvreeriececieeie e 64
ToAdd an Actionto aTest/TeSt Groupc.ocereeerereneenieririesie e 64
To Specify Parameters for Actionsin a Test/Test Group.................. 66
To View Parametersfor Actionsin aTest/Test Group.......cccccveeunene 67
To Specify the Limitsfor aTest......ccccoevevvie v 67
To Remove an Action from aTest/Test Group...........cccveveerenierenne 68

To SaveaTest Definition inaLibrary ..., 69

To Pass Results Between Tests/Test GroupS.........cocevveeirienieneienienienens 71

Contents-3

To Share aVariable Among Actionsin a Test/Test Group.................... 73

Controlling Switching During a Test/Test Groupcccceveeveeeereeeveenine 75
Overview of Creating a Switching ACtionc.ccccevveveeicieeseene. 75
To Create a SWitching ACHIONoocee i 76
To Delete a Switching ACHIONcooee e 77
To Modify a Switching Path in a Switching Actioncccccc........ 77
To Delete a Switching Path in a Switching Action...........ccccoevene.. 78
Specifying Variations on Tests/Test Groups When Using Variants...... 79
OVEIVIBWW ...ttt se et s eneeseesneeneeeennea 79
To Specify a Test/Test Group’s Characteristics for Each Variar@
Viewing the Test Execution Detalls.............ccccooeeiiiiiiiiiiiieeeies 81
OVEBIVIBW. ... 81
To View the Test Execution Details............cccccvvvvvvieiiiiiiiiiieenennn. 83

3. Working With Actions

Things to Know Before Creating ACtioNS.........ccoovvvviiiiiiiiieeeeeceeeiiinnns 86
HOW DO | Create ACHIONS?......ccvvviiiiiiieiieeeeeeeeeeeee e 86
Which Languages Can | Use to Create Actians?...........cc.evveeee. 87
Improving the Reusability of Actions.............ccooeeiiiiiiiciiccs 88

Designing for Reusability.............cccoovvvviiiiiiiiiereeccie e, 88

Documenting Your ACLIONS.........coouviiiiiiii e 89
Choosing Names for ACtions..........cccceeveeieeiiiiieiiiiiie e, 89
Entering Descriptions for Actions............ccccccoeeeeii. 90
Entering Descriptions for Parameters.............cccooeeeeinnnns 90
Choosing Keywords for ACtions...........ccccceevvveeeeiiieieenceee, 90

TO Define an ACHION.ot ee e eeeeeeas 92

Using Parameters with ACLIONS............ccccceeeiiiiiiiiieecce e, 95
Types of Parameters Used With Actions.........cccoooooeiiiiiiiiieenn. 95
To Add a Parameter to an ACtion...........ccoooeeiiiiieei e 97
To Modify a Parameter to an ACtion............ccvvvviiieiiiiiiiiiiieecee. 98
To Delete a Parameter to an ActiQn...........cccccvvvvvvvvvinvivnininninnnne, 99

Using Keywords With ACHIONS.........cccoviiiieiiiiiiiiie e 100
To Add a Keyword to an ACtiON...........ccoovvvviiiiiiiiiieeceecceeveee, 100
To Delete a Keyword from an ACtion.............ccoovviiiiiiiieeeieneinnnnns 100
To Add a Master Keyword to the List...............ooo oo, 101
To Delete a Master Keyword from the List................................ 101

Contents-4

Contents

Creating ACHIONS TN C ..o e e 102
Overview of the ProCess.........cocovviieiiereiireeesee e 102
WIHEING C ACLIONS. ..ottt 103

Using Parameter Blocks With aC Compilerccoeevvcvrieninne 103
Using Parameter Blocks With a C++ Compiler.........cccocvveee. 106
Exception Handling in C ACtiONS.........cccccevvieeiiievee s 111
Using C Actionsto Control Switching Paths...........cccocevieieenneenee. 114
OVEIVIBIW ..ttt ettt et enee e enes 114
Using API Functions to Control Switching Pathss.................... 115
Using States to Store Switching Data...........cccoovveveierieicnicnine 117
Adding Revision Control Information for Actions.............cccce...... 120
Example of Creatinga C ActioninaNew DLLccccceeveevvennnee. 121
Defining the ACtiON........coice i 121
Specifying the Development Environment Options................... 122
Specifying the Path for Libraries...........cccocoovvviveececnnen, 122
Specifying the Path for Include Files...........cccccooveieiecnenen, 123
Creating aNew DLL Project........cccccoeeiiivennieniiineseeee e 123
Specifying the Project SettingsScccccceveevieniec v 125
Writing Source Files for the Action Code..........ccccvvevieveenee, 128
Adding Source Filesto the Project...........cccooovvvvivevie e, 129
Verifying the Project's Contents..........ccccccvvvviiiiieeiiiecieceee 130
Choosing Which Configuration to Build......................c..o. 130
Building the Project..........coiiiiiiiiiiee e 130
Copying the DLL to Its Destination Directary....................... 131
OVEBIVIBW. ...ttt ettt ettt e et e e e e e e e e e e e e e e e e e e e aaaaaaaaaens 131
Creating a Custom Tool to Copy the DLL........................ 131
Using the Custom Tool to Copy the DLL............ccceeeenns 132
Example of Defining a C ACtiON..........ccoovvvvvviiiiiiiiiiiiee 133
Adding a C Action to an EXisting DLL...........ccccvvveiiiiiiiiiiiienenn. 134
Debugging C ACHIONS.......coiiieen e e e 136

Creating Actions in HP VEE..............cccooiii i, 139
Restrictions on Parameter Usage in HP VEE..............c..vcove 139
Defining an HP VEE ACLON.............ooooiiiii e, 140
Example of an HP VEE Action..................ccccce 140

Contents-5

Debugging HP VEE ACHONS.........ccccoviieiiieceeee et 142

Error Handling iNn HP VEE............ccoo i 142
Controlling the Geometry of HP VEE Windows...........cccccceveenens 143
Executing HP VEE Actions on a Remote System...........cccccceeneee. 143
Creating Actionsin National Instruments LabVIEWccccoeeueeee. 145
REGEA FIIES........oeciiciiciecee et 146
Restrictions on Parameter Passingcccoeverieneninenieseesienene 146
Defining a National Instruments LabVIEW Action..........c.ccc...... 148
Example of aNational Instruments LabVIEW Action 149
Setting Interface Options for National Instruments LabVIEW....... 150
Creating Actionsin HP BASIC for Windows.........cccccceevveveeieenieene. 151
REGEA FIIES........ceieicieiccee e 152
Restrictions on Parameter Usage in HP BASIC for Windows........ 152
Defining an HP BASIC for Windows ACtion............ccceveeeveiieenen. 153
Creating an HP BASIC for Windows Server Program 153
Example of an HP BASIC for Windows Action.........cccccccevvenee. 156
Debugging HP BASIC for Windows ACtions..........ccceeeevveieennennn 157

4. Working with Switching Topology

Defining the Switching TOPoIOgYcccceveeiiiiiese e 160
OVEIVIBIW ...ttt e e e e eneeseeenes 160
Matching Physical Hardware to Logical Names...........cccccceceene.e. 162

Where Do the Names of Switching Paths Come From?............ 162
Using Aliases to Simplify the Names of Switching Paths......... 163
When Should | Specify WIres?..........ccovvvvvieinieneneseeseiee 164
What Happens If a Node Has Multiple Names?............ccccueue. 164
How Do | Specify the Preferred Name for aNode?.................. 165
Defining the SysStem Layer ..o seeie e 166
Defining the FIXtUre Layerc.ooovveiineiecnieeeese e 168
Defining the UUT Layer ..o 170
Using the Switching Topology Editor...........ccccceveveieieeieie e, 171
To Create aTopology Layercccveveeveeiee e ecee s 171
USING AlIGSES ...ttt e 172
TOAdd AN AlIBS.....oeiieeeeee e 172
TOMOdify @ AlIBS......ccoiiiieicieeeee e 173
ToDeetean AliaS......cccvieeveieieeeee e 174

Contents-6

Contents

USING WITES... .ottt 174
TOAAD AWIT.. .o s 174
TOMOITY AWITE ... 175
TODEAEEAWIIE.....cecveceece ettt 176

USING MOTUIES ...t 176
ToAdd aModule.........oooiieeeeee e 176
To Modify aModule..........ccooeiieiieiecece e 177
To DeleteaMOodUle.........cccooeeeeiiiiieeeee e 178

Duplicating an Alias, Wire, or Module..........ccccovviveeenennnnee, 178

5. Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Test & Action Librariesccovveeiee s 180
How Keywords Simplify Finding Itemsin Libraries...................... 180
Searching for Itemsin Libraries.......ccooveoeveveccice e 180

Searching for ActionsinaLibrary ..., 181
Searching for TestsinaLibrary.......ccccooveivienineieseesee, 182
Strategies for Searching Libraries........cccoe e, 183
Specifying the Search Path for Libraries..........cocooovivieiciceenne, 184
To Specify System-Wide Search Paths for Libraries................. 185
To Specify Testplan-Specific Search Pathsfor Libraries.......... 186
To Remove a Path from the List of Search Paths....................... 186
Using Search Paths to Improve Testplan Portability............c......... 187

WIS TaTo I DI ir='Fol o oo Fo OSSN 188
What Happens During Datal 0gging?.........ccoveveeveenieenieenieesessieennens 188
What is the Behavior & Format for Logged Data?cccccveeneee 189
Controlling How Datalogging Worksccccevveeveiieieecese s 190

To Set the Datalogging Options for an Entire Testplan............. 190
To Change the Datalogging Options for an Individual Test......191
To Select the Datalogging Behavior and Format 192
Using Datalogging with a Spreadsheet............ccccevieveeiec e 193
To Configure Datalogging for Use With a Spreadsheet 193
What's Inside a Datalogging File Formatted for Spreadsh&e&?
How Does the Data Appear in a Spreadsheet?.................. 196

Contents-7

Why You May Need to Reformat the Data............ccccceeevenenneen. 197

To Import a Datalogging File into Microsoft Excel 97 197
Using Datalogging with Q-STATS Programs...........ccceeeevveseennennn. 199
To Set the Learning Feature & Pass Limits Information........... 199
Restrictions on the Names of TeStS.......cccovveiierriiieeie e 200
Managing Datalogging FilesS..........cccveiiiiiiiniieec e 200
Troubleshooting Problems with Dataloggingccoceeeveienienene 200
UsSiNg Symbol TableScccviiiiiiiice e 202
About Symbol Tables........ccccveiiiiieccee e 202
Predefined Symbolsin the System Symbol Table...........c.c........... 203
How Symbols Are Defined in Flow Control Statements................ 205
Programmatically Interacting with Symbols............cccccoveveveiienens 206
To Examine the Symbolsin a Symbol Table.........c..ccoovevvevennneen. 206
To Add aSymbol to a Symbol Table.........c.ccceveveiievieiecieseee 207
To Modify a Symbol ina Symbol Table..........cccoevievieiieenieecee 207
To Delete a Symbol from a Symbol Table.........cccccovevveieieenenee. 208
Using External Symbol Tables........ccccooviveiieccececce e, 208
To Create an External Symbol Table..........cccoeeevviicieiecienee, 208
To Link to an External Symbol Table..........ccccooevvvvviieieiinnee, 209
To Remove aLink to an External Symbol Table....................... 209

L LS oo I AN o [(] o S 210
To Document Testplans, Actions & Switching Topology 211
TODOCUMENE TESES ...t e 212
To View or Print Auditing Informationccccceevvvivevieiccieenee, 212

6. System Administration

SYSEEIM SELUP ..ottt e et e et et nee s 214
Specifying the Location of the System Topology Layer................. 214
Specifying the Default Variant for aNew Testplan.............c.......... 214
Setting Up an Operator or Automation Interface.........c..cccvevenenee. 215

OVEIVIBIW ...ttt 215
Setting Up an Automation Interface to Start Automatically...... 215

Starting an Automation Interface Created in Visual Basic... 215
Starting an Automation Interface Created in Visual C++ 215
Setting Up Automatic Printing of Failure Tickets..................... 216
Specifying the Polling Interval for Hardware Handlers............. 216

Contents-8

Contents

Setting Up the Auditing FEatUreS...........ccccocevcveece e 217
Controlling the Appearance of the Status Listccccevenneee. 217
Controlling the Operation of the Revision Editor 218

Directories and FilES.........ccoviiiieieie e 220

Standard DireCLONES.........ccueiieieeesecece e 220

Standard File EXIENSIONS.........ccooeeiiiiiierere e 221

INItIaliZation FIlES.......coiiieeee e 222

Recommended Locations for FIes.........ccocovovieeeiiineececeee, 223

MaNagING DLLS.....c.ooiiiiiiiiieeie et 224
How HP TestExec SL Searchesfor DLLS.......ccccccvvvevecieienee. 225
Situations That Can Cause Problems With DLLs...................... 226
Symptoms Associated with Loading the Wrong DLL 227
Minimizing the Problems with DLLS.........c.ccceeveviiiiievienceee 228

Managing Temporary Fil€S........ccoeviiciciie e 228

Controlling SyStem SECUNTYcccvevveieceee et 229

Using the Default Security SEttingsccovvereierinereneeese s 229
USEN GIOUS.....ccueeieeeieeniee e st sie st 230
SYSLEM RESOUICES.....ccvveeiiee e ettt et esnee s 230
Group AcCeSS PriVIlEgEScccveveie e 230

Customizing Security SEttiNGSccccveeveere e 231
To Change aPasswWord..........cccccviieeereiecie e 231
TOAdd aNEW USEN ... 232
To Modify an EXisting USEr ..o 233
To Deletean EXisting USErcceccveveeviceere et 233
To Modify aUser's Privileges.........ccocevevceececce e, 233
To Add aNew Group of USErS........cccevevcieeinnieere e 234
To Modify an Existing Group of USers.........cccccevvveieeveiiesneene 234

Adding Custom Toolsto HP TESLEXEC SLccvvvveeeeiicieceecieciene, 235

Syntax for Adding Custom TOOIS.........ccccveveereiiiie e 235

To Add Entriesto the TOOIS MENUcoieiiiieieeceeee e 237

Contents-9

7. Working with VXlIplug& play Drivers

What iSVXIPIUG& PlAY ... 240
How Do HP TestExec SL & VXIplug&play Work Together?............ 241
How Do Actions Control Instrumentsvia VXIplug&play?................. 243
To Control aVXIplug&play Instrument from an Action..................... 246
Configuring HP TestExec SL to Use V XIplug& play Instruments. 246
Creating the ACHIONcoceeee e 247
Using the ACtION iN @ TESt......ccoceecieciececece e 249
Beyond VXIPIUG&PIAYcccoereiiieiiieeee e 251

8. Using String Formatting

What is a Formatted StriNg?.......cccveiieiie et 254
The Two Types of Formatting Operations............ccocceererereneienenienens 255
Updating a String from its Replaceable Parameters........................ 255
Updating Replaceable Parametersfrom a Stringccccovvvveveeneee. 256
How Does String Formatting Work 2. 258
Which Data Types are Supported for Replaceable Parameters?.......... 259
What Happens if “Update Parameters from String” Fails2........... 260
Notes About String FOrmatting...........cccceevviiiiiiiieeeiiiiiiieeeee e 262
How are Formatted Strings Useful?............ccovvieiiiiiiiiii 264

9. Using Actionsto Control M essage-Based | nstruments

Overview of Controlling Message-Based Instruments.................. 266
Why Use Actions to Control Message-Based Instruments?... 266
When Can | Use Actions to Control Message-Based Instrum2ets?

Using Actions to Control Message-Based Instruments................. 268
Adding the Instrument to the Switching Topology.................... 268
Which Actions Does HP TestExec SL Provide2...................... 269
Choosing Which Action to US ..., 269
Setting Up the ACiON.........o.ooooi 270
Copying the Action Definition...........ccccocvvvvieiviiiiiiiiiiiiireeeeeee 270
Customizing the Action Definition.............ccccccvvvvvviiiniiiniieeninn, 271
Why Did You Customize the Action Definition?........................ 275
Using the Actionin a Testplan..........ooovvriiiiiiiiiii e, 276
What if the Instrument Returns a Response?...........ccccccceeeennne 277

Choosing Which Action t0 USE.........ccevvvvviiiiiiiiiiiiiiiiiiieeeeee 277

Contents-10

Contents

Setting Up the ACHION........coi e 277
Customizing the Action Definitionccccocevvevievecceccieesee, 278
Debugging Actions That Control Message-Based Instruments...... 282
Notesfor AQvVanCed USEN'S.........ccoeiiiieiieiesiecie e 284

10. Testing Multiple UUTs

About MUlti-UUT TeSHING....ccoeeiieriecie et 288
Why Test MUItiple UUTS?......ooiieieeeee e 288
What Makes Multi-UUT Testing Faster?..........cccoovvveieicincnienens 289
How Does HP TestExec SL Test Multiple UUTS?.....cccevvviienne 290
What Must You Do to Test Multiple UUTS?....c.ocoeevecceciicieee, 291
Example of aMulti-UUT Testplan.........cccooveevieveevienveesee e 292
Symbols Used by Multi-UUT Testingccccoceeevvieeeieiie e 293
More About UULPOSIdcceeiiiicececce e 294
Multi-UUT Effects on Datalogging..........ccovrerieerereneneieeseneens 295
Multi-UUT Effects on REPOItiNgcccoveevinierieiniieveeeee e 295
Multi-UUT Effectson Testplan Listings........cccvvevievieeneenieevinene. 295
Multi-UUT Effects on Breakpoints & Single-Stepping.................. 295
Multi-UUT Effectson Switching ..o 296

Testing MUItIPIE UUTS.....oiuiiiieiieseieese e 298
Enabling Multi-UUT TeStiNGcccevvvverieriiieininiesieseeese e 298
Creating the First UUT POSItioN.........ccccovevieiiiiiie e 299

Creating a UUT Topology Layer for the First UUT 299
Creating & Debugging a Testplan for the First UUT Position ..299
Converting the Testplan to aMulti-UUT Versioncccccccceeneee 300
Globally Enabling Multi-UUT Testing........ccocuverirereeeneriennn. 300
Controlling the FIow of TeStiNg.......cccoovveriieiririeeee e 301
Adding Flow Control Statements...........ccccovevieveiieesesesnenes 301
Specifying Multi-UUT Optionsfor Individual Tests............ 301
Adding UUT Positionsto the Testplanccccevoeevievieciecveccieenen, 303
Adding aNew UUT POSItIONcoeveiiiniieieisesesesesieee 303
Running the Testplan & Debugging the New UUT Position.....304

Contents-11

The Multi-UUT Operator Interface.........cocvveereiivnininesesesenen 305
Compatibility of Single- & Multi-UUT Operator Interfaces.......... 306
Running a Multi-UUT Testplan on a Single-UUT Interface..... 306
Running a Single-UUT Testplan on aMulti-UUT Interface..... 306

Some Differences Between the Modules..........coooveveienineeenne 306
Unique Features of the Multi-UUT Operator Interface................... 307
Variable mbMultiUutTestplancovvvevininineeececie 307
Shortcuts When Accessing Symbolsin Symbol Tables............ 307
Potential Differencesinthe Indexing of Arrays........cccccceeuveee. 307
Changing the Number of UUT PoSitions..........ccccccevevieiieevnncieenns 308
Considerations for Factory Automation.............cccccceevieeceeiencieeneas 309
How are Serial Numbers Read?..........cocoovvivieve i 309

What if the Testplan Reads Serial Numbers from UUTS?......... 309
What if the Testplan Gets the Testing Status from UUTS?........ 309

Index

Contents-12

Working With Testplans

This chapter describes how to use testplans, which are named sequences of
teststhat are executed as a group to test a specific device or unit under test.

For an overview of testplans, see Chapter 3 in the Getting Sarted book.

Working With Testplans
A Suggested Process for Creating a Testplan

A Suggested Processfor Creating a Testplan

Although we have no way of knowing about your specific hardware, we
recommend that you consider the following process when creating a
testplan.

Preparing to Writethe Testplan

1. Gather the testing specifications and requirements for the UUT (unit
under test).

You must thoroughly understand the UUT before you can test it
effectively. Thisincludes both the physical (such as pinouts) and
electrical characteristics of the device.

2. Plan thetests and the sequence in which they will be executed.

Determine which kinds of tests are needed in your testplan (including
tests for failure and exception handling, if desired). Determine the order
in which the tests should be executed. Given the above, determine where
to use test groups.

Tip: You may find it useful to draw a worksheet and make copies of it to
write on when planning tests. For example, the worksheet might briefly
describe the test, list the hardware resources needed, the test limits, any
setup or cleanup requirements, timing constraints, alist of input and

Working With Testplans
A Suggested Process for Creating a Testplan

output pins, and such. An example of atypical worksheet is shown
below.

TEST NAME VoltZDMM

Measurement(s): (measure, limits)

10 volts Limits: 9.9 - 10.1

Preconditions:
UUT Setup

None

Connections X .
V Src hi to DMM hi, V src lo to DMM lo

Power (volts, amps, pin)

N/A

Load (value, power, pin) N/A
Constraints:

Timing N/A

Test Sequencing N/A

Test Description:
Output 10 volts w/voltage source & measure w/DMM

Reuse:
Test Templates

Volt2DMM

Actions Switching, Configure V source, Measure DMM

Instruments: (name, settings) V source 10 volts

DMM volts

3. Plan the system resources for each pin on the UUT.

Using the information from the previous step, be sure your test system
has the hardware resources needed to do the tests. For example, do you
have enough power supplies, signal sources, and signal detectors? If not,
you must add hardware or find away to simplify the tests.

4. Plan and build the fixture or other means of connecting the test system’s
hardware with the UUT.

Pins on the UUT must be connected to the test system’s power supplies,
signal sources, and signal detectors. If you test various kinds of UUTs on
asingle test system, you may want to use an interchangeable fixture to
make the connections. Or, you need some type of cabling to make the
necessary connections.

Working With Testplans
A Suggested Process for Creating a Testplan

If you are using programmable switches, such as switching cards, to
make connections between resources and the UUT and you have
hardware handler software for those switches, you probably will want to
use the Switching Topology Editor to define your topology so you can
use switching actions in your tests.

Writing the Testplan
1. Add testsand test groups to your testplan.

2. Copy and customize existing tests from libraries where possible. Where
needed, add the teststo test groups. If thereis no existing test to reuse,
create new tests from existing actionsin libraries where possible. If no
suitable actions exist from which you can create a new test, create new
actions, add them to an action library, and then create a new test from
them.

3. Tunethetestsfor performance and reliability.

This process can be as flexible asyou like. For example, you might begin

by creating actions, using them to create tests, and then using the tests to
create a testplan. But if it is more convenient—for example, if different
people are developing the actions and the testplan—you may want to
begin with an empty testplan and then expand it by adding tests as the
actions needed to create the tests become available.

For more information about tuning tests, including how to use
HP TestExec SL's built-in profiler, see “Optimizing the Throughput of
Testplans.”

Working With Testplans
To Create a Testplan

To Createa Testplan

Use the Test Executive's graphical tools to create atestplan.

1. Click IE in the toolbar or choose File | New in the menu bar.
2. Choose Testplan as the type of document.
3. Choose the OK button.

4. Add one or more tests or test groups to the list shown in the |eft pane of
the Testplan Editor.

For information about adding tests and test groups, see “Using Tests &
Test Groups in Testplans.”

5. Click E in the toolbar or choose File | Save in the menu bar.
6. Enter a name for the testplan.

7. Choose the Save button.

Working With Testplans
To Specify Switching Topology Layers for a Testplan

To Specify Switching Topology Layersfor a
Testplan

The switching topology information for a specific testplan resides in three

files whose extensions are “.ust”. These files contain information about the
system, fixture, and UUT layers of switching topology. Given that one test
system can use many testplans, you must specify which switching topology
files to use for a given testplan.

Each test system has one system layer defined for it. The nhame and location
of the file containing the system layer resides in HP TestExec SL's
initialization file. This is described under “System Setup” in Chapter 6.

Although you can locate the remaining two files, which contain the fixture
and UUT layers, wherever you like, it usually makes sense to put them with
other files used with the testplan. Then you must associate these two
topology files with the testplan.

Do the following to associate the files for the fixture and UUT layers with
the testplan:

1. Load the testplan.

2. Choose Options | Switching Topology Files in the menu bar.

3. Specify the locations of the files for the fixture and UUT layers.

For an overview of switching topology, see “About Switching Topology” in

Chapter 3 of th&etting Sarted book. For detailed information, see
Chapter 4 in this book.

Working With Testplans
Using Tests & Test Groups in Testplans

Note

Using Tests & Test Groupsin Testplans

The Testplan Editor window supports the various mechanisms that

Microsoft Windows provides to select multiple items; i.e., holding the Ctrl

key as you click multiple items; pressing and holding the mouse’s left button
and then dragging across multiple items; and clicking the first item in a
desired list, simultaneously pressing and holding the Ctrl and Shift keys, and
clicking the last item in the list. This means that many of the tasks described
for individual tests or test groups also can apply to multiple tests or test
groups. For example, if you select multiple tests or test groups, you can copy
or delete them as you would a single test or test group.

To Add a New Test/Test Group

1. Click the desired insertion point in a testplan shown in the left pane of the
Testplan Editor window.

The test or test group will be inserted immediately before the line
selected as the insertion point.

2. Do one of the following:

 Toinsert atedt, click in the toolbar or choose Insert | Test in the
menu bar.

-0r -

O
e Toinsert atest group, cIickE in the toolbar or choose Insert | Test
Group in the menu bar.

3. Do the following in the right pane of the Testplan Editor window:

a. Specify a name for the test or test group.

Working With Testplans
Using Tests & Test Groups in Testplans

If you are using datalogging, be aware of the following restrictions on
the names of tests or test groups:

» If your log data is processed by HP Pushbutton Q-STATS, you
must not use slashes (/ or \) in test names.

« If your log data is processed by Q-STATS II, only the first forty
letters of the test name are significant.

b. Add any desired actions to the test or test group.

See “To Add an Action to a Test/Test Group” in Chapter 2 for more
information.

c. If you wish to use variants to provide multiple versions of the
parameters and limits, specify them.

See “To Add a Variant to a Testplan” for more information.

To Add an Existing Test

The easiest way to create a test is to reuse a similar test from a test library.

Note Be sure the search paths for test libraries are set up correctly or you may not
be able to find the test you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With a testplan loaded, choose an insertion point in the left pane of the
Testplan Editor window.

The test will be inserted immediately before the line selected as the
insertion point.

2. Click @ in the toolbar or choose Insert | Saved Test in the menu bar.

3. When the Test Libraries box appears, use it to find an existing test similar
to the one you need.

Working With Testplans
Using Tests & Test Groups in Testplans

For more information about using the Test Libraries box’s search
features, see “Searching for Items in a Library” in Chapter 5.

4. Make a copy of the test under a new, unigue name.

5. Modify the existing actions as needed.
For more information, see “To Specify Parameters for Actions in a
Test/Test Group” and “To Specify Limits for Actions in a Test/Test
Group” in Chapter 2.

6. Modify the existing parameters as needed.

For more information, see “Specifying Parameters for a Test/Test Group”
in Chapter 2.

To Examine or Modify a Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Editor
window.

2. Use the right pane of the Testplan Editor window to examine or modify
the contents of the test or test group.

See Chapter 2 for information about specifying the contents of tests and test
groups.

ToMovea Test/Test Group Within a Testplan

1. Select one or more tests or test groups in the left pane of the Testplan
Editor window.

2. ChooselE in the toolbar or Edit | Cut in the menu bar.
3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.

Working With Testplans
Using Tests & Test Groups in Testplans

4. Choose @ in the toolbar or Edit | Paste in the menu bar.

ToMovea Test/Test Group Across Testplans

1. Run two copies of HP TestExec SL and load the source testplan in one
and the destination testplan in the other.

2. Select one or more tests or test groups in the left pane of the Testplan
Editor window in the copy of HP TestExec SL that has the source
testplan loaded.

3. Choose IE in the toolbar or Edit | Cut in the menu bar of the copy of
HP TestExec SL that has the source testplan loaded.

4. Click the desired new location for the test or test group in the left pane of
the Testplan Editor window in copy of HP TestExec SL that hasthe
destination testplan loaded.

If you click an existing line, the test or test group will be inserted before
that line.

5. Choose @ in the toolbar or Edit | Paste in the menu bar of the copy of
HP TestExec SL that has the destination testplan loaded.

When moving tests or test groups across testplans, the following rules apply
to testplan variants:

 |f the source and destination testplans have a variant with the same name,
tests are simply moved and the variant’s attributes—i.e., its name,
parameters, and test limits—are preserved.

< If the source testplan has a variant that does not exist in the destination
testplan, the attributes for the variant associated with the test or test group
being moved are lost. In other words, a new variant is not created in the
destination testplan.

10

Working With Testplans
Using Tests & Test Groups in Testplans

« If the destination testplan has a variant that does not exist in the source
testplan, a new variant is created for the test or test group being moved.
This new variant assumes the attributes of the first variant in the source
testplan, which typically is the variant named “Normal.”

To Copy a Test/Test Group Within a Testplan

1. Select one or more tests or test groups in the left pane of the Testplan
Editor window.

2. Choos in the toolbar or Edit | Copy in the menu bar.

3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.

4. Choos@ in the toolbar or Edit | Paste in the menu bar.

To Copy a Test/Test Group Across Testplans

1. Run two copies of HP TestExec SL and load the source testplan in one
and the destination testplan in the other.

2. Select one or more tests or test groups in the left pane of the Testplan
Editor window in the copy of HP TestExec SL that has the source
testplan loaded.

B
3. Choos in the toolbar or Edit | Copy in the menu bar of the copy of
HP TestExec SL that has the source testplan loaded.

4. Click the desired new location for the test or test group in the left pane of
the Testplan Editor window in copy of HP TestExec SL that has the
destination testplan loaded.

11

Working With Testplans
Using Tests & Test Groups in Testplans

If you click an existing line, the test or test group will be inserted before
that line.

5. Choose @ in the toolbar or Edit | Paste in the menu bar of the copy of
HP TestExec SL that has the destination testplan loaded.

When copying tests or test groups across testplans, the following rules apply
to testplan variants:

 |f the source and destination testplans have a variant with the same name,
tests are simply copied and the variant’s attributes—i.e., its name,
parameters, and test limits—are preserved.

< If the source testplan has a variant that does not exist in the destination
testplan, the attributes for the variant associated with the test or test group
being copied are lost. In other words, a new variant is not created in the
destination testplan.

 |f the destination testplan has a variant that does not exist in the source
testplan, a new variant is created for the test or test group being copied.

This new variant assumes the attributes of the first variant in the source
testplan, which typically is the variant named “Normal.”

To Deletea Test/Test Group

1. Select a test or test group in the left pane of the Testplan Editor window.

2. Choose Edit | Delete in the menu bar.

12

Working With Testplans
Controlling the Flow of Testing

Controlling the Flow of Testing
Using Flow Control Satements

Note You specify flow control statements in predefined, “fill in the blanks” dialog
boxes. If you make an error in entering the syntax, you will be prompted to
correct it.

13

Working With Testplans
Controlling the Flow of Testing

Which Flow Control Satements are Available?

HP TestExec SL supports the following statements that let you control the
flow of testing in atestplan. (See the following topic for the syntax of
expressions in flow control statements.)

if..then...else Conditionally executes one or more statements in the
testplan, depending upon the value of an expression.

i f Expression then
[st at enent s]
[el se
[statenents]]
end if

Example:

if System RunCount = 5 then
test Testl

el se
test Test2

end if

for...next Repeats one or more statements in the testplan a
specified number of times. A negative value for St ep
causes the counter to decrement.

for Variable = Start to End step Step
[st at enent s]
next

Example:

for Counter = 1 to 5 step 1
test Testl
next

14

for...i

loop

Working With Testplans
Controlling the Flow of Testing

Repeats one or more statements in the testplan for each
value in a list of arguments.

for Variable in Goup
[st at enent s]
next

Example:

for SequencelLocal s. MyVariable in C A B
I Assume that Sequencelocal s. MyVari abl e
I is passed as a paraneter to Testl
test Testl

next

Repeats one or more statements in the testplan until a
condition specified in an expression is satisfied.

| oop

[st at enent s]

exit if Expression
end | oop

Example:

| oop

test Testl

test Test2

exit if SequencelLocal s. WVariable = 3
end | oop

15

Working With Testplans
Controlling the Flow of Testing

It also supports the miscellaneous syntax elements listed below, which you
can use with the flow control statements.

= (assignment operator) Sets a variable to a value.

Vari abl e = Val ue

Example:
X=2
SequencelLocal s. MyVariable = 7

comment Non-executing line used to document a
testplan.

Example:

I This is a comment

else, end if, next, end Syntax elements used with the flow control

loop, exit if statements. Some of these are required and
others optionally extend the functionality of the
flow control statements.

What isthe Syntax for Expressions?

Expressions in HP TestExec SL's flow control statements are a combination
of operators, variables, and parentheses that use the BASIC-like syntax
described in the following topics.

16

Working With Testplans
Controlling the Flow of Testing

Using Arithmetic Operators

HP TestExec SL lets you use the math operators listed below in expressions
in flow control statements.

Addition

Subtraction

Multiplication

Division

The addition operator adds two numbers or concatenates
two strings. The operands can be any two numeric
expression or strings. However, they must both be of the
same type (either numeric or string). If the variables are
strings, they will be concatenated.

result = exprl + expr2

The subtraction operator subtracts two humbers. The
operands can be any numeric expression.

result = exprl - expr2

The multiplication operator multiplies two numbers. The
operands can be any numeric expression.

result = exprl * expr2

The division operator divides two numbers. The operands
can be any numeric expressions.

result = exprl [expr2

Using Relational Operators

HP TestExec SL’s relational operators let you compare two string or numeric
expressions in flow control statements. They follow the general syntax of

result = exprl <operator> expr2

17

Working With Testplans
Controlling the Flow of Testing

where result is any numeric variable. You can use the relational operators
listed below to determine if result is True (any non-zero value) or False
(zero).

Operator Meaning Trueiif... False if...
< Less than exprl <expr2 exprl>= expr2
<= Less than or equal to exprl <= expr2 exprl > expr2
> Greater than exprl > expr2 exprl <= expr2
>= Greater than or equalto exprl>=expr2 exprl < expr2
= Is equal to exprl = expr2 exprl <> expr2
< Not equal to exprl <> expr2 exprl = expr2

Using Parentheses

If desired, you can use parentheses to force the order of execution of
operatorsin expressionsin flow control statements. Parentheses cause
individual statements inside the parentheses to be evaluated first. This
evaluation is then used with other operators in an expression to evaluate the
overall statement.

Refer to the example below, which shows an assignment statement that
includes arithmetic operators.

A=2+3%*4

Here, the value of A evaluatesto 14 because the normal order of operator
precedence is multiplication before addition.

The next example uses parentheses in the assignment statement to override
the normal order of operator precedence. Here, the value of A evaluatesto

18

Note

Working With Testplans
Controlling the Flow of Testing

20 because the parentheses force the addition of 2 and 3 before multiplying
their sum by 4.

A=(2+3) *4

What Arethe Rulesfor Using Flow Control Statements?

Keep the following in mind when using flow control statements:

Variable names can be either the name of the symbol by itself, such as
“A” or “MySymbol”, or include the name of an internal or external
symbol table, such as “SequencelLocals.MySymbol”.

Note: Variables in flow control statements must use symbols in global
symbol tables (Sequencelocals, System, or external).

If you use a variable in a flow control statement but do not specify a
symbol table as part of the variable’s declaration, HP TestExec SL looks
for an existing symbol with the same name in the SequencelLocals
symbol table. If there is no existing symbol, one is automatically created
in SequencelLocals.

Symbols that are created automatically like this default to a numeric data
type. If you need a different data type, such as a string, you must explicitly
create the symbol prior to using it.

ToInsert a Flow Control Statement into a Testplan

1.

In the left pane of the Testplan Editor window, choose the desired
insertion point in your testplan.

You can insert a statement on a blank line or into existing tests or
statements. If you click to highlight an existing test or statement, the new
statement will be inserted immediately preceding it.

Choose Insert | Other Statements in the menu bar and select the desired
kind of flow control statement.

19

Note

Working With Testplans
Controlling the Flow of Testing

3. Usetheright pane of the Testplan Editor window to enter any
declarations required for the specific kind of flow control statement you
chose.

Interacting with Flow Control Satements

The syntax for accessing a symbol in a symbol table from aflow control
statement is <symbol table. symbol>. If you do not specify <symbol table>,
its value defaults to Sequencel ocals.

If desired, you can directly manipulate the value of avariable in aflow

control statement or use the variable’s value to control some aspect of
testing. Then, examining or modifying the value of the symbol is the same as
examining or modifying the value of the variable in the testplan.

How is this useful? Suppose you were testing a module whose stimulus—an
input voltage, perhaps—needed to vary within predefined limits until the
module either passed or failed. You could:

1. Execute the test for that module in a “for...next” loop, such as:

for Voltage = 9.9 to 10.1 step 0.1
Modul eTest
next

2. In the test for the module, query the value of the counter variable and use
it to vary the stimulus.

Modul eTest
...Get value of Voltage fromsynbol table
...Use value of Voltage to increnent input voltage

Other examples of using flow control statements with symbols include:

< Branching on passing or failing tests, which are described under “To
Branch on a Passing Test” and “To Branch on a Failing Test”

» Executing a test or test group only once per run of the testplan, which is
described under “To Execute a Test/Test Group Once Per Testplan Run”

20

Working With Testplans
Controlling the Flow of Testing

To Branch on a Passing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
pass branch to” feature based on the results of a test; e.g.,

test Testl
if System TestStatus = 0 then
I If Testl passed run Test2

test Test?2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.
2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus = 0” for the value of
Expression in the right pane.

4. Place any tests, test groups, or statements you wish to have executed as
“branch on pass” within the boundaries of the “if...then” statement.

To Branch on a Failing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
fail branch to” feature based on the results of a test; e.g.,

test Testl
if System TestStatus >= 1 then
' If Testl failed run Test2

test Test2
end if
test Test3

Or, you can use the graphical On Fail Branch To feature that is built into
each test.

21

Working With Testplans
Controlling the Flow of Testing

Do either of the following:

1. Intheleft pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus >= 1" for the value of

Expression in the right pane.

4. Place any tests, test groups, or statements you wish to have executed as
“branch on fail” within the boundaries of the “if...then” statement.

-0r -

1. In either the Main or Exception sequence, click a test in the left pane of
the Testplan Editor window.

2. Choose the Options tab in the right pane of the Testplan Editor window.

3. Click the arrow to the right of “On Fail Branch To” to invoke a list of
tests to which the current test can branch if a failure occurs.

The default value of “<Continue>" means that if the current test fails, the
next test in the list will be executed; i.e., there is no branching.

4. Click a test in the list to select it as the desired branch.

To Branch on an Exception

1. Inthe left pane of the Testplan Editor window, click the arrow to the right
of “Testplan Sequence”.

2. Choose “Exception” in the list.

3. Add one or more tests to the list of tests for the Exception sequence.

22

Working With Testplans
Controlling the Flow of Testing

Thislist of testswill be executed if an exception occurs when executing
the testplan.

4. Click the arrow to the right of “Testplan Sequence”.

5. Choose “Main” in the list to return to the Main—i.e., non-exception—
sequence of tests.

To Execute a Test/Test Group Once Per Testplan Run

You can use an “if...then” statement to examine the predefined RunCount
symbol in the System symbol table and have specific tests, test groups, or
statements executed only once each time the testplan runs; e.g.,

test Testl
if System RunCount = 1 then
! Execute Test2 the first tine the testplan is run

test Test2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select a line where
you wish to insert an “if...then” statement to bound one or more tests, test
groups, or statements to be executed only once per testplan run.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.RunCount = 1” for the value of
Expression in the right pane.

4. Place the desired tests, test groups, or statements within the boundaries of
the “if...then” statement.

Tolgnorea Test

If desired, you can use the “Ignore this test” feature to ignore a test when the
testplan is run. Because no integrity checking is done on ignored tests, they
are useful when you wish to insert non-working tests during testplan
development and finish them later. Also, you can use ignored tests in

23

Working With Testplans
Controlling the Flow of Testing

conjunction with variants so that one variant of atestplan executes different
tests than does another variant.

Test F'arametersl .-“-‘-.u:tin::nsl Limitz | Options Dncumentatiunl

As shown below, an ignored test has a small cross beside it in the sequence
of tests.

F Testplan Editor

Testplan Sequence: I & ET j

ezt Testl
I The test below will be ignored

1. With atestplan loaded, in the left pane of the Testplan Editor window
click to select the test to be ignored.

Note If you are using variants, specify which variant to use before telling the Test
Executive to ignore atest. For more information about variants, see
“Testplan Variants” in Chapter 3 of thdsing HP TestExec SL book.

2. Choose the Options tab in the right pane of the Testplan Editor window.

3. Check the box labeled “Ignore this test”.

24

Working With Testplans
Running a Testplan

Running a Testplan

ToLoad a Testplan

Load atestplan so you can examine, modify, or run it.

|
1. Click in the toolbar or choose File | Open in the menu bar.

2. Typethe name of an existing testplan file (.tpa) or use the graphical
browser to find an existing testplan.

3. Choose the Open button.

To Run an Entire Testplan
Run atestplan to execute the tests in it.

1. Load thetestplan, if needed.

2. (optional) If you wish to use atestplan variant other than the default,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Optionsin the
menu bar.

b. On the Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Choose E in the toolbar or choose Debug | Go in the menu bar.

25

Caution

Working With Testplans
Running a Testplan

To Run Selected Testsin a Testplan

Run selected testsin atestplan to exercise the functionality of a subset of the
testplan.

Running selected testsis a powerful feature for debugging testplans.
However, its degree of safety and effectiveness depends on the setup and
cleanup tasks associated with tests. For best results, be sure you either know
what state hardware isin before and after each test or use a setup/cleanup
action to specify explicitly the entry and exit conditions for each test. If the
tests you select to run appear inside a test group, the setup/cleanup tasks
associated with the test group will be run.

1. Load thetestplanif it is not already loaded.

2. (optional) If you wish to use atestplan variant other than the defaullt,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Optionsin the
menu bar.

b. Onthe Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Sdlect one or more tests by holding down the Ctrl key and clicking them
in the left pane of the Testplan Editor window.

Tip: You can select an inclusive range of tests by holding the Ctrl key and
clicking atest at the start of the desired range, holding the Shift key
without releasing the Ctrl key, and then clicking atest at the end of the
desired range.

26

Working With Testplans
Running a Testplan

4. Do either of the following to run the selected tests:
» Choose Debug | Run Selected Tests
- or' -

* Right-click on one of the selected tests and choose “Run Selected
Tests” from the menu that appears.

The selected tests will be run in the order in which they appear in the left
pane of the Testplan Editor window.

Viewing What Happens as a Testplan Runs

Using the Report Window to Monitor Results

As shown below, the Report window lets you monitor the results as a
testplan runs.

Report !EI m

s

Begin Testplan =]
CAProgram Files\HP TestExec SLisamples\filterdemo\testplan\Filter.tpa
Test Variant: Normal
10430/96 10:58:50

Opening 10 Session

Opening 10 to Module

Clearing and Resetting the Module
Digitizing the Signal

Closing 10 to Module

Closing 10 Session L]

-

End of Testplan

4]] 4

Tip: You may want to minimize the Report window if you wish to examine a
report later but do not want the Report window appearing all the time.

27

Working With Testplans
Running a Testplan

To Enable/Disable the Report Window

» With a testplan loaded, cIi in the toolbar or choose

Window | Report in the menu bar.

A check mark appears to the left of Report in the upper region of the
Window menu when the Report window is enabled.

To Specify What Appearsin the Report Window

1. With a testplan loaded, cIi in the toolbar or choose

View | Testplan Options in the menu bar.
2. When the Options box appear, choose its Reporting tab.

3. Enable/disable any or all of the following check boxes under Report.
Passed tests If enabled, information about tests that pass appears in
the Report window.

Failed tests If enabled, information about tests that fail appears in
the Report window.

Exceptions If enabled, information about exceptions that occur
while executing the testplan appears in the Report
window.

4. Choose the OK button.

Using the Trace Window to Monitor I/0O Operations

As shown below, the Trace window lets you dynamically monitor I/O
operations with hardware, such as instruments and switching modules, in a

28

Working With Testplans
Running a Testplan

test system as atestplan runs. Options associated with it let you specify
when to trace tests and how much information to gather during tracing.

e mEm|

Ylrace: =
YRunSequence

Scope: viOpenDefaultRM: Opened resource mgr session feed [65261)
MUX3: Closed element [row 0, column 0]

MUX3: Closed element [row 1, column 3]

MUX3: Closed element [row 1. column 1]

MUX3: Closed element [row 0, column 2]

Scope: Opened Resource 133dd08 [20176136), mode 0, timeout 0, session=
Scope: Set attribute VI_ATTR_TMO_VALUE on object 1a2b [6699] to value de
Scope: session deed [57069]): Clearing instrument

Scope: Session deed [57069] <="*RST"

Scope: Session deed [57069) <= "SYSTEM:HEADER OFF.*SRE 16"

Scope: Session deed [57069]) <=""AUTOSCALE;:ACQUIRE:TYPE NORMAL.CC

Trace information appears in named “streams” of information that identify
the information’s source. The name of the stream is followed by a semicolon
and the status message for that stream. In the example above, MUX3 is the
name of a trace stream whose source is a hardware handler that controls a
switching module whose logical name is “MUX3". Status information from
MUX3, such as “Closed element [row 0, column 0]”, describes what is
happening at MUXS3 as the testplan runs. “Scope” is another stream in the
example.

Using the Trace window is a three-step process. You must:

1. Enable the Trace window

2. Specify which tests to trace

3. Specify what kind of trace information to display for each traced test

To Enable/Disable the Trace Window

* With a testplan loaded, choose Window | Trace in the menu bar.

29

Working With Testplans
Running a Testplan

As shown below, a check mark appearsto the left of Trace in the upper
region of the Window menu when the Trace window is enabled.

el

I Beport
i v Trace
| Watch

To Specify Which Testsare Traced

1. With atestplan loaded, in the left pane of the Testplan Editor window
choose one or more tests to be traced.

2. Choose Debug | Set Trace in the menu bar.

As shown below, atrace icon appears to the left of traced tests.

P Testplan Editor

Testplan Sequence: I [ET j

tezt Check. Period

test Check Risetine

test Check. Yolkage Peak to Peak

Tip: A quick way to select all tests for tracing isto choose atest in the left
pane of the Testplan Editor window, type Ctrl-aor choose Edit | Select All in
the menu bar, and then choose Debug | Set Trace in the menu bar.

To Specify What Appears When Testsare Traced

1. With atestplan loaded, choose Debug | Trace Settings in the menu bar.

30

Working With Testplans
Running a Testplan

2. Enable/disable any or all of the following items under Trace Settings.
Each corresponds to a named stream of trace information.

User Trace If enabled, user-defined trace information appears for
actions in traced tests as the testplan runs. This is the
default stream for trace information sent from actions.

“User-defined trace information” means information
programmatically sent to the Trace window from
actions via API functions such as Ut aTr ace() . See
the Reference book for more information about APIs
used for tracing.

Test If enabled, test names appear for traced tests in the
Trace window as the testplan runs.

Test Details If enabled, detailed information about traced tests
appears in the Trace window as the testplan runs.

other Some actions, hardware handlers, or instrument
drivers add other stream names to the Trace settings
menu.

API functions such as Ut aTr aceEx() and

Ut abwModTr aceEx() let you send trace
information in named streams from actions and
hardware handlers, respectively. See the Reference
book for more information about APIs used for tracing.

As shown below, acheck mark appears next to the names of streams selected
for tracing.

User Trace
Test
v Test Details

To Stop a Testplan

When you stop atestplan, execution halts when the current operation, such
as executing an action, has finished.

31

Working With Testplans
Running a Testplan

|
e Choose Debug | Stop or in the menu baE in the toolbar.

Note If you need to halt a testplan immediately, use the Abort command instead.

To Abort a Testplan

When you abort a testplan, execution halts immediately regardless of what
the testplan is doing.

» Choose Debug | Abort or in the menu bal_!_l in the toolbar.

Note If you wish to complete the current operation in progress—such as executing
an action—before halting, use the Stop command instead.

32

Working With Testplans
Other Tasks Associated with Testplans

Other Tasks Associated with Testplans

Using Global Variablesin Testplans

Global variables et actions share data acrosstestsin atestplan. The scope of
aglobal variable can be;

e The entire testplan, which means the symbol is stored in an external
symbol table or in the System symbol table.

» Restricted to a single sequence in a testplan, which means the symbol is
stored in the SequenceLocals symbol table.

For detailed information about using symbols tables, see “Using Symbol
Tables” in Chapter 5.

Note By default, HP TestExec SL stores some global information in predefined
symbols in the System symbol table; see “Predefined Symbols” in
Chapter 5.

To Use a Global Variable Whose Scope isthe Testplan

1. With a testplan loaded, use the Symbol Tables box (View | Symbol
Tables) to declare a new symbol in an external symbol table.

Example: The name of the external symbol table is “ExtSymTable.sym”
and the name of the symbol in it is “ExtSymbol”.

Note: If there is no existing external symbol table to hold your global
variable, use File | New and choose Symbol Table to create a new one.
Then choose the Link to External Symbol Table button in the Symbol
Tables box to make the externally stored symbol visible to your testplan.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. In the list of actions, choose an action that has a parameter you wish to
associate with the global variable.

33

Working With Testplans
Other Tasks Associated with Testplans

8.

9.

Example: The name of the parameter is “dutvoltage”.

Click the Name column in the row that contains the parameter of interest.

Click thelZ‘ button to invoke the editor for the parameter.

. When the editor for the parameter appears, emefiefences a symbol if

it is not already enabled.

. Use the Available Tables list to select the external symbol table that

contains the global variable you created earlier.
Use the Available Symbols list to select the name of the global variable.

Choose the OK button.

Example: The value of parameter “dutvoltage” now is
“ExtSymTable.ExtSymbol”; i.e., the value of the parameter is determined by
the value of symbol “ExtSymbol” in the symbol table named ExtSymTable.

To Use a Global Variable Whose Scope is a Sequence

1.

In the left pane of the Testplan Editor window choose a sequence—Main
or Exception—in which to use the global variable.

. If the chosen sequence does not already have a suitable symbol defined in

its SequencelLocals symbol table, create one.

Example: Assume the name of the global variable is “GlobalVar”.

. Choose the Actions tab in the right pane of the Testplan Editor window.

In the list of actions, choose an action that has a parameter you wish to
associate with the global variable.

Example: The name of the parameter is "dutvoltage".

Click the Name column in the row that contains the parameter of interest.

34

Working With Testplans
Other Tasks Associated with Testplans

6. Click the IZI button to invoke the editor for the parameter.

7. When the editor for the parameter appears, enable references a symbol if
it is not already enabled.

8. Usethe Available Tableslist to select the Sequencel ocals symbol table.

9. Usethe Available Symbolslist to select the name of the global variable.
10.Choose the OK button.

Example: The value of parameter “dutvoltage” now is
“SequencelLocals.GlobalVvar”; i.e., the value of the parameter is determined

by the value of variable “GlobalVar” in the SequencelLocals symbol table for
the chosen sequence.

To Specify the Global Optionsfor a Testplan

1. With a testplan loaded, cIi in the toolbar or choose

Options | Testplan Options in the menu bar.

2. Use the features on the various tabs in the Testplan Options box to
specify the global options for the current testplan.

To Specify Which Topology Filesto Use

1. With a testplan loaded, choose Options | Switching Topology Files in the
menu bar.

2. Type the name of a topology file for the fixture layer or click the
associated Browse button and use the graphical browser to choose a file.

3. Type the name of a topology file for the UUT layer or click the associated
Browse button and use the graphical browser to choose a file.

4. Choose the OK button.

35

Note

Note

Note

Working With Testplans
Other Tasks Associated with Testplans

Topology files have a “.ust” extension; e.g., “fixturel.ust”.

Using Testplans & UUTswith an Operator Interface

To Register a Testplan for an Operator Interface

A typical operator interface lets production operators choose from a list of
testplans to run. You must manually edit file “tstexcsl.ini” to specify which
testplans appear in the list, which variant is chosen by default, and a brief
description of what the testplan does.

1. Open file “tstexcsl.ini” (in directory “HP TestExec SL home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more testplans to the [Testplan Reg] section of the
file.

The file contains descriptive comments about the formats of these entries.

3. Save the updated file and exit the editor.

To Register a UUT for an Operator Interface

Some operator interfaces let production operators use a bar code reader to
scan the information for a UUT, and then parse the bar code to automatically
load the appropriate testplan. If your operator interface supports this feature,
you must manually edit file “tstexcsl.ini” to specify the association between
UUTs and testplans.

1. Openfile “tstexcsl.ini” (in directory “HP TestExec S home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more UUTs to the [UUT Reg] section of the file.
The file contains descriptive comments about the formats of these entries.

3. Save the updated file and exit the editor.

36

Working With Testplans
Other Tasks Associated with Testplans

Using Variantsin Testplans

Variants let you create named variations on the contents of a testplan. After

you create a testplan’s variants, you can specify the parameters and limits for
the tests and test groups in each variant. Because they let yoneuse

testplan withn different sets of test limits and parameters, variants are useful
where one UUT is very similar to another except for slightly different values
for its test limits or parameters.

To Add a Variant to a Testplan
1. With a testplan loaded, choose Options | Variants in the menu bar.
2. When the Test Variants box appears, choose the Add button.

3. In the Add Variant box, type a name for the new variant in the field under
New Variant.

4. Choose a template for the new variant from the list of existing variants
shown under Based On.

Tip: Base the new variant on whichever existing variant is most like the
new one.

5. Choose the OK button.

For information about specifying the contents of variants after you have
created them, see “Specifying Variations on Tests/Test Groups When Using
Variants” in Chapter 2.

To Renamea Variant in a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

3. Choose the Rename button.

37

Working With Testplans
Other Tasks Associated with Testplans

4. Inthe Rename Variant box, choose the name of an existing variant from
the list shown under Variant Name.

5. Type anew name for the variant in the field under New Name.
6. Choose the OK button.

To Delete a Variant from a Testplan

1. With atestplan loaded, choose Options | Variantsin the menu bar.

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

Note: You cannot delete Normal, which is the default variant.
3. Choose the Delete button.

4, Choose the OK button.

38

Working With Testplans
Examining Testplans & System Information

Examining Testplans & System Infor mation

Overview

The Listing window letsyou view or print information about various aspects
of your testplans and hardware controlled by your test system. The example
below shows how you can view a descriptive listing of the testsin atestplan.

E= Filter.tpa H=l Q3

Listing topic: TESTS

Testplan file: C:\Program FilesWHP TestExec SLYsSamplesifilterdemo’ testplany
...Filter.tpa

Froduced at: 12/5/1996 13:01:18

TestiGrp: testgroup I/0 Configure

Setup Lction: Configure IQ Session

Switching: [+15 P5_+]
[-15 DC/DC Converter — Input F3 -]
[GND P3_-]
[GHND DC/DC Converter + Input F3 4]
At Test Setup: Connect Paths
At Test Cleanup: Disconnect Paths

LR E R E R R R AR AR AR R ARt

TestGrp: testgroup Time Domain
Setup Lotion: Initialize module

Variant: Normal
Parm: module handle WValue: [@Sequencelocals.Scope

Which Kinds of Information Can | Examine?

The categories of information you can examine or print in the Listing
window include:

Actions Lists detailed information about actions in the current
testplan, including action names, source file names, and
routine names

Symbol tables Liststhe symbols used in symbol tables in the current
testplan.

39

Working With Testplans
Examining Testplans & System Information

Testplan Audit

Testplan

Tests

Adjacencies

Node Labels

Instruments

Switches

Fixture Layer

System Layer

UUT Layer

Lists auditing information for the current testplan

Lists detailed information about the current testplan,
including test groups, tests, actions, variants, and run
options.

Lists detailed information about tests in the current
testplan, including test names, actions, variants, source
files names, and routine names.

Lists all topology adjacencies—i.e., nodes separated by
a switching element—for the current testplan, including
preferred node names, adjacency names, module names,
and switching elements and their positions.

Lists all node labels for the current testplan, including
label names, preferred node names that are aliased,
descriptions, and keywords.

Lists information about instruments controlled by the
current testplan.

Lists information about switching hardware controlled
by the current testplan.

Lists topology information about connections on the
fixture topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
system topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
UUT topology layer, which includes aliases, wires, and
modules.

ToList Testplans & System Information

1. Choose View | Listing in the menu bar.

40

Working With Testplans
Examining Testplans & System Information

2. Choose which type of listing to view.

To Print Listings of Testplans & System Infor mation
1. Choose View | Listing in the menu bar.

2. Choose which type of listing to view.

. Click % in the toolbar or choose File | Print in the menu bar.

w

4. Set the printing options as desired.
5. Choose the OK button.

Tip: You can use File | Print Preview in the menu bar to see how alisting will
look before printing it.

To Find Specific Text in Listings

If desired, you can search any of the various listings of system information
for a specific word or phrase.

1. If you have not already done so, generate the listing that you wish to
search.

2. With the window in which the listing appears active, click Iﬂ inthe
toolbar or choose Edit | Find in the menu bar.

3. Inthe"Find what" field, specify the text for which you wish to search.

Tip: Check the "Match case" box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the "Find
what" field.

Tip: Use the Direction option to choose which direction to search from
the current position in the listing.

4. Choose the Find Next button.

41

Working With Testplans
Examining Testplans & System Information

To Find Specific Text in Sequences & Listsof Actions

If desired, you can search for aword or phrasein:

. With a testplan loaded and the Testplan Editor window active,lﬁ\

The current sequence that appears in the left pane of the Testplan Editor
window

This lets you find items such as a specific test in a testplan or the name of
a specific variable used in a flow control statement.

The list of action names that appears on the Actions tab in the right pane
of the Testplan Editor window

This lets you find a specific action in a list of actions.

in the toolbar or choose Edit | Find in the menu bar to invoke the Find in
Sequence/Actions box.

. In the "Find What" field, specify the text for which you wish to search.

Tip: Check the "Match Case" box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the "Find
What" field.

Tip: Check the "Whole Word Only" box if you do not wish to find partial
forms of the word or phrase.

Tip: If desired, you can restrict the range of searching by
selecting/deselecting options under Search.

Choose the Find Next button.
Tip: The drop-down list under the "Find What" field retains words and

phrases used in previous searches. Use this list to quickly respecify a
previous search without further typing.

42

Working With Testplans
Debugging Testplans

Debugging Testplans

Asyou develop testplans and their components you need to verify their
operation and any fix problems that arise. HP TestExec SL's debug features
let you interact with testplans and their components as they execute.

If you are using C/C++ to develop actions, also see “Debugging C/C++
Actions” in Chapter 3.

Using Interactive Controls & Flags

Once started, a testplan normally runs from beginning to end, executing tests
in the order in which they appear in it. However, the Test Executive provides
several features you can use to modify the running of a testplan. These
features can be particularly useful when you are debugging a testplan or test,
or when you need to stop or pause the testplan at a specific place while
troubleshooting a UUT.

There are two main kinds of features you can use to control testplans:

Interactive These are features such as Stop/Continue, Restart, Step,
Controls Stop, and Pause. They are interactive insofar as using them
causes an immediate response.

Flags You can set “flags”™—i.e., markers—in the testplan. A flag is
acted upon if it is encountered as the testplan runs. You can
set a flag that marks a test to be stopped upon, skipped,
traced, or have its actions single-stepped. Also, you can
clear an individual flag or clear all flags for selected tests.

43

Working With Testplans
Debugging Testplans

As shown below, these features appear as options under the Debug menu in
the menu bar.

Options Window Help

Go F5 -«

Bestart Shift+F5

Step F10 Interactive
Stop F7 controls
Pausze F& R

Set Breakpoint F9 -

Clear Breakpoint Shift+F3

Set Skip Ctrl+k

Clear Skip

Set Trace Flags
Clear Trace

Set Action S5tep F11

Clear Action S5tep Shift+F11

Clear Debug Items -

When you use the Debug menu’s options to set a flag for a test in a testplan,
one of the icons shown below appears to the left of the test.

This icon... Means that...
A breakpoint has been set for the test, which means the
@ testplan will execute until the breakpoint is encountered,
and then stop executing immediately before the marked
test.
Items marked in the testplan will be skipped; i.e., the
@ testplan will not execute the marked items.

Be aware that skipping a test is not the same as ignoring it
(see “Ignoring a Test” earlier in this chapter); the overall
integrity of skipped tests is checked, but that of ignored
tests is not.

Y The test will be traced, which means that status information
will appear in the Trace window as the test executes.

44

Working With Testplans
Debugging Testplans

Actions in the marked test will be single-stepped. The
h testplan will pause at the first action in the test, and you can
use either the Step command in the Debug menu or the

s | icon in the toolbar to execute the test’s actions one at
atime.

A combination of the trace and single-step icons; i.e., the
@ marked test will be traced as you single-step through it.

As ashortcut when setting flags, you can select atest in the left pane of the
Testplan Editor window and then right-click to invoke the menu shown
below.

P Testplan Editor - Filter

testgroup Time Domain

Tesztplan Sequence: IMain vI Test Name: Im
teztgroup [0 Configure Summary:

—

¢ Comim | et
» tezst Check Waoltage Peak to Actions
[testCheck Frequency
test Check Owversh I M
end testgraup Set Breakpoint F9
end teztgroup Set Skip Ctrl+K
Set Trace
Set Action Step F11
Clear Breakpoint Shift+F9
Clear Skip
Clear Trace
Clear Action Step Shift+F11
Clear Debug Items
Select All Ctrl+A

Run Selected Tests

Tip: If desired, you can select multiple testsin atestplan and simultaneously
set or clear all of their flags.

45

Caution

Working With Testplans
Debugging Testplans

If you add flags and then save atestplan, the flags are saved with it. Be sure
to remove flags from testplans before rel easing them to production. For
example, a breakpoint flag can cause the testplan to stop executing
prematurely and leave the operator interface “hung.”

Single-Stepping in a Testplan

Single-stepping in a testplan lets you pause as needed to verify that tests and
actions are working correctly.

Single-Sepping Through Tests

Overview

If desired, you can single-step through the tests in a testplan. Each time you
single-step, the testplan executes one test, halts, and then displays a pointer
icon that identifies the next test to be executed.

In the example below, test ProfilerDemoTestl has been executed and the
testplan has halted pending execution of test ProfilerDemoTest2.

P Testplan Editor

Testplan Sequence: IMain ;I

test ProfilerDemaT estl
[ezt ProfilerDemoT est2

tezt ProfilerDemoT est3
test ProfilerDemaoT est4

To Single-Sep Through the Testsin a Testplan

< With a testplan loaded, cIiE in the toolbar or choose Debug | Step
Test in the menu bar.

46

Working With Testplans
Debugging Testplans

To Cance Single-Stepping Through the Testsin a Testplan

|
» While single-stepping through a testplan, cll-_— in the toolbar or
choose Debug | Stop in the menu bar.

Single-Sepping Through Actions
Overview

Each test in a testplan contains one or more actions. If desired, you can
single-step through the actions. This can be useful if you wish to verify the
results of each action as a test executes. For example, you can connect test
equipment to the UUT, pause on a specific action, and verify that the action
is interacting correctly with the UUT.

When the testplan is paused while single-stepping through actions, the Test
Debug Information box shown below appears.

Test Debug Information [x|

Test Mame: ProfilerDemoTest2

Entry Execute
Test Cperation Mames ProfilerDemo
Test Parameters Courit: 10
Test Localz

: ProfilerDemo

Cortinue Step

Here, the test’'s name is ProfileDemoTest2 and it contains an execute action
named ProfilerDemo that uses a parameter named Count whose value is 10.
The test is paused on ProfilerDemo.

47

Working With Testplans
Debugging Testplans

To Single-Sep Through Actions

1. With atestplan loaded, in the eft pane of the Testplan Editor window
click atest whose actions you wish to step through one at atime.

2. Choose Debug | Set Action Step in the menu bar or right-click and
choose Set Action Setup from the menu that appears.

3. Runthetestplan as usual.

4. When the test pauses on an action and the Test Debug Information box
appears, make debugging measurements or select an iteminthelist under
Test Operation Names and examine its characteristics.

5. Do one of the following:

» To single-step to the next action in the test (if the test contains more
than one action), choose the Step button.

-0r -

« To proceed to the next test without single-stepping through any more
actions in the current test, choose the Continue button.

-0r -

: || .
« To stop after executing the current test, chE in the toolbar
and then choose the Continue button.

6. When you have finished single-stepping, clear the flags used to mark the
tests.

Using the Watch Window to Aid Debugging

Overview

Many programming environments provide a “watch” feature that lets you
examine the values of variables and expressions while debugging programs.
In a similar fashion, HP TestExec SL lets you specify items such as symbols,

48

Note

Working With Testplans
Debugging Testplans

instrumentst, or switching paths to be watched when debugging a testplan.
You use the Insert menu to place these items into the Watch window, as
shown below, and then examine them when the testplan is paused, such as
while single-stepping through actions.

m ¥iew Debug Options Window Help

I Test Chrl+T *e E =1l i
3 Test Group Ctrl+G |—| ®| | Iféﬁl | |

Saved Test. ..

Other Statements »

Alias Chrl+L

Wire Ctrl+'w

Module Ctrl+M

Instrument. ..

Switching Hode._.

All Switching Modes

The name of the symbol table in which a symbol residesis prefixed to the

name of the symbol. In the example above, the symbol named TestStatus

appears in the symbol table named System—i.e., System: TestStatus—and
its current value is zero.

To ensure that testplans execute rapidly, the Watch window is updated only
when testplan execution pauses or stops.

To Insert a Symbol into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, click its border to
make it active.

1. You can watch instruments only when using specific driver software from
Hewlett-Packard.

49

Working With Testplans

Debugging Testplans

2. Choose Insert | Symbolsin the menu bar.

3. When the Select Symbol to Watch box appears, do the following in it:
a. Choose a symbol table from the list under Available Tables.
b. Choose a symbol from the list under Available Symbols.
c. Choose the OK button.

For more information about symbol tables, see “Using Symbol Tables” in
Chapter 5.

To Insert a Switching Node into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, clicks its border to
make it active.

2. Choose Insert | Switching Node in the menu bar.

Tip: As a shortcut when setting watches on all switching nodes, choose
Insert | All Switching Nodes in the menu bar.

3. When the Select Switching Node box appears, do the following in it:
a. Choose a node from the list.

Tip: If desired, you reduce the number of nodes that appear in the list
by choosing a Filter from the list.

Tip: If desired, you can sort the list of nodes by selecting the Sort
Node Names check box.

b. Choose the OK button.

For more information about switching nodes, see “About Switching
Topology” in Chapter 3 of th&etting Sarted book.

50

Note

Working With Testplans
Debugging Testplans

Tolnsert an Instrument into the Watch Window

Thisfeature is enabled only when using specific instrument drivers provided
by Hewlett-Packard.

With atestplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, click its border to
make it active.

Choose Insert | Instrument in the menu bar.

When the Select Instrument box appears, do the following init:

a Choose an instrument from the list.

b. Choosethe OK button.

To Remove an Item from the Watch Window

1

In the Watch window, select the item to be removed.

Tip: If the Watch window is not visible, choose Window | Watch in the
menu bar. If the Watch window is visible but inactive, clicksits border to
make it active.

Choose Edit | Delete in the menu bar.

51

Working With Testplans
Fine-Tuning Testplans

Fi

ne-Tuning Testplans

A testplan isonly as good asthe testsin it. Good tests are fat, reliable, and
accurate. After you have your tests and testplan running, you may want to
consider taking the steps described in the following topics to fine-tune your
results.

Optimizing the Reliability of Testplans

Several waysto improve the reliability of your testplans are:

Debug known problems in actions and tests as needed.

For example, you can use the debugging features of the language used to
create actions to debug actions. And you can use features in the Test
Executive that control the running of testplans to pause on a test, skip a
test, and such while debugging tests.

Run testplans for a prolonged period, such as overnight, to verify the
reliability of the tests in therh.

Tip: To run repetitively a testplan, use the “Loop for count” or “Loop for
time” options under Sequencer Repeat on the Execution tab in the
Testplan Options box (Options | Testplan Options).

Sequencer Repeat

O Loop fFor time [d:hom:g] | 0-00-00:-00

Run testplans with datalogging on and examine the results for
consistency.

1. If you do this, you may want to turn off datalogging to prevent log records
from potentialy filling your hard disk.

52

Working With Testplans
Fine-Tuning Testplans

For example, you might turn on datalogging and run the testplan to
collect dataabout asingle UUT or agroup of UUTSs. If the data are
inconsistent, try to identify which test(s) is the problem and then fix it.

» Deliberately stress your testplan by introducing conditions that can cause
exceptions, and add fixes as needed.

For example, you might see what happens if an instrument “times out”
without returning a reading. Or, you might deliberately test UUTs whose
performance is grossly outside the normal limits.

Optimizing the Throughput of Testplans

Suggested Waysto Make Testplans Run Faster

Some ways in which you can make your testplans execute faster are:

» Use test groups to do slow actions outside of tests or to eliminate
redundant tasks.

If you have a group of tests whose setup/cleanup needs are alike, insert
those tasks once, at the beginning of a test group that includes the group
of tests, instead of inside each test. An example of this might be
initializing power supplies or setting up instruments that require similar
setups for more than one test. If several tests require positive sources, do
the tests as a group. Or, if several tests require the same UUT setting, do
the tests as a group.

» Use triggers for fast synchronization of tests.

For example, avoid synchronizing to slow cycle waveforms. Also, avoid
controller-induced test delays.

» Find faster ways to do tests.
For example, use a DMM instead of a slower digitizer.

» Use HP TestExec SL's profiler feature (described below) to optimize the
actions inside tests in a testplan.

53

Note

Working With Testplans
Fine-Tuning Testplans

Using the Profiler to Optimize Testplans

HP TestExec SL includes a profiler you can use to see how long each action
or test group in atestplan takes to execute. Once you know how long each
action or test group takes to execute, you can decide where to begin the
“tuning” process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then either
view Pareto charts directly in HP TestExec SL or use a financial spreadsheet
program to further analyze the data. As shown below, the profiler display in
HP TestExec SL lists actions or test groups in order from slowest to fastest,
and shows how long each took to complete.

?_ﬁlﬁclion Sum Pareto List [_ o] =]

Action Sum Pareto List

Profiler Demo 0.035

AddTwolntegers 0.0m

n L] L] L] L] L]
0.000 0.010 0.020 0.030 0.040 0.050

Time [in seconds)
Testplan Name: C:ATemp\Goldibin\ProfilerDemo.tpa
Current Testplan Variant: Normal
Current Date and Time: 08{23{96 06:56:26

Each time you run the testplan, profiler data from the previous run is
discarded. If a testplan aborts, its profiler data is lost. Also, the profiler is
automatically turned off whenever you exit a testplan.

Because the profiler can significantly degrade HP TestExec SL's
performance, you probably will not want to run it during production testing.

To Set Up the Profiler
Before you can use the profiler, you must enable it.

1. Choose Options | Testplan Options in the menu bar.
2. In the Testplan Options box, choose the Profiler tab.

3. Enable the Enable Profiler check box.

Working With Testplans
Fine-Tuning Testplans

4. If, besides viewing the profiler datain HP TestExec SL, you want to save
the data in a tab-delimited file for subsequent analysis, such asin a
spreadsheet, do the following:

a Select the Save to File check box.
b. Either type the name of afilein the data entry field or choose the
Browse button and use the graphical browser to specify anamefor the

file in which the profiling data will be saved.

5. Choose the OK button.

Note Because atestplan that contains failing tests is likely to have terminated
prematurely without executing all of itstests, profiling is automatically
disabled when atestplan contains failing tests. If you wish to use profiling
anyway, enablethel gnore al |l fail ur es option onthe Execution tab
of the Testplan Options box (Options | Testplan Options). This causes the
testplan to run to completion despite failures.

To Run the Profiler

< With the profiler enabled, run the testplan as usual.

As the testplan runs with the profiler enabled, HP TestExec SL collects
data about the testplan.

To View Profiler Resultsin HP TestExec SL

1. After running the testplan with the profiler enabled to collect data,
choose View | Profiler Results in the menu bar.

2. Choose how you would like to see the data displayed.

55

Working With Testplans
Fine-Tuning Testplans

Formats for displaying profiler datain Pareto charts include:

Sum of Action Execution Times Total time that actions in the
testplan took to execute. If an
action is used more than once, this
will be its accumulated time.

Average Action Execution Times Average time that actions in the
testplan took to execute. If an
action is used more than once, this
will be the arithmetic mean of each
execution time.

Sum of Test Execution Times Total time that tests in the testplan
took to execute.

Average of Test Execution Times Average time that tests in the
testplan took to execute.

3. If you wish to limit the amount of data that appears, specify an alternate
value for Maximum Number of Itemsto Display.

4. Choose the OK button.

Tip: If desired, you can simultaneously view other types of Pareto charts
by choosing Profiler Pareto from the menu bar and choosing another type
when the viewer is active.

Tip: If desired, you can use File | Print Graph to print the results when the
viewer is active.

To View Profiler Resultsin a Spreadsheet

When you use the profiler’s Write to File option and specify a file name,
data is saved in a tab-delimited format suitable for examination with a
spreadsheet.

Hewlett-Packard also provides a worksheet (“profile.xIs”) and an add-in
(“profile.xla”) you can use with Microsoft Excel as the starting point in
examining the data file's contents. These files are located in directory
“<HP TestExec SL home>\samples\excelmacrosAs shown below, loading

56

Working With Testplans
Fine-Tuning Testplans

either of these files adds a Profiler option and related menu items to Excel’'s
menu bar.

-
Toolz Data Window

; Load Haw Data r

= Test Pareto
Action Sum Pareto

L Action 5td Dev Pareto
Action Average Pareto
Action Min Pareto
Action Max Pareto
Action Occurrence Pareto

57

Working With Testplans
Moving a Testplan

Moving a Testplan

You may want to develop testplans on a central development system that is
fully configured even if you intend to use them elsewhere. That way, not
every test system needs afull set of hardware resources for compatibility;
i.e., each destination system needs only the subset of the devel opment
system’s resources that are required to run a specific testplan.

Once you have developed and debugged a new testplan on the development
system, you probably will want to release it to your production environment.

For example, if you intend to run the testplan on more than one test system,
you must copy the appropriate filesto other systems. Also, you probably

will want to make a backup copy of the completed testplan “just in case.”

Do the following to move a testplan from your development system to
another syster:

« Be sure the destination system has all the hardware resources needed to
run the testplan.

» Copy the testplan file—i.e.téstplan_name.tpa™—to the destination
system.

» Be sure all the files used by actions in your testplan exist on the
destination system. These include “*.umd” files and executable libraries.

Tip: You can use View | Listing | Actions to list the contents of actions in
a testplan. Or, you can use an audit listing to show all the files used by a
testplan.

» Copy the topology files for the fixture and UUT layers (“fixture.ust” and
“uut.ust” files or equivalent) to the destination system.

« If external symbol tables are associated with the testplan, copy them
(“*.sym” files) to the destination system.

1. Thedirectory structure on the destination system can be different from the
directory structure on the development system.

58

Caution

Working With Testplans
Moving a Testplan

« \erify that the datalogging options are the same across the systems:

Be sure the [Data Log] section in the “tstexcsl.ini” file on the
destination system identifies the format and definition files you wish
to use when datalogging.

Be sure the datalogging options for the testplan (Options | Testplan
Options | Reporting) reflect the settings you wish to use on the
destination system.

Be sure the destination system's topology file for the system layer
(“system.ust”) is the same as or a superset of the file on the
development system.

Be sure to remove any flags, such as skipped tests or breakpoints, if
you are moving the testplan to a system used for production testing.

For more information about flags, see “Using Interactive Controls &
Flags.”

Flags left in the testplan can cause the operator interface to behave
incorrectly. For example, a breakpoint flag can cause the testplan to stop
executing prematurely and leave the operator interface “hung.”

For suggestions about setting up library search paths to optimize the
portability of testplans, see “Using Search Paths to Improve Testplan
Portability” in Chapter 5.

59

Working With Tests & Test Groups

This chapter describes how to use tests, which are a sequence of actions
executed as a group to do some form of testing, and test groups, which are
primarily away of structuring tests.

For an overview of tests and test groups, see Chapter 3 in the Getting Sarted
book.

61

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

Specifying Parametersfor a Test/Test Group

To Add a Parameter to a Test/Test Group

1. With atest or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose the Insert button.

3. Specify the parameter’s characteristics.
You can click a row under Value and chooseg button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.
See “Specifying the Properties for Parameters & Symbols” in Chapter 3
of theGetting Sarted book for general information about specifying
parameters.

4. Choose the OK button.

Tip: If you enter more than one parameter, you can use the Up and Down
buttons to rearrange the order in which parameters appear in the list.

Modifying a Parameter for a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Edit button.

4. Modify the parameter’s characteristics.

62

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

You can click arow under Value and choose the IZI button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapter 3
of the Getting Sarted book for general information about specifying
parameters.

5. Choose the OK button.

Tip: You can use the Up and Down buttons to rearrange the order in which
parameters appear in the list.

To Remove a Parameter from a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Delete button.

4. Choose the OK button.

63

Note

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

Specifying Actions for a Test/Test Group

Because actions let tests do useful tasks, tests typically have actions
associated with them. Test groups, however, can be useful even without
having actions associated with them. For example, you might use test groups
simply as aids in structuring your testplans.

To Add an Action to a Test/Test Group

Be sure the search paths for action libraries are set up correctly or you may
not be able to find the action you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With the desired test or test group selected in the left pane of the Testplan
Editor window, choose the Actions tab in the right pane.

2. Click in the list under Actions for Testtest name>' to specify where to
insert an action into the test.

The action will be inserted immediately before the line selected as the
insertion point.

64

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

3. Do either of the following:

If the action is a...

switching action

regular action

a.

b.

Do this...

Choose the Insert Switching button.

Under Parameters for “Switching”, specify the
switching path(s) and what action should be
taken for them at setup and cleanup.

See “Controlling Switching During a Test” for
detailed information about creating switching
actions.

Choose the Insert button.

When the Insert Action box appears, use it to
find the desired action and insert it into the test.

For more information about using the Insert
Action box’s search features, see “Searching for
Items in a Library” in Chapter 5.

Specify the action's parameters and limits (if it
returns a result) as needed.

See “Specifying the Properties for Parameters
& Symbols* in Chapter 3 of the Getting Sarted
book for general information about specifying
parameters. Specific procedures for specifying
parameters and limits are described in the next
couple of topics.

Tip: As a shortcut when inserting regular actions,
you can select the area in which the list of actions
appear and begin typing. As shown below, the first
action whose name matches the characters you
type will be selected in the list that appears. Select
an action in the list and press Enter to insert it into
your test.

65

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

Tip: Asashortcut when inserting regular actions, you can select apoint in
thelist of actions and begin typing. As shown below, the first action whose
name matches the characters you type will be selected in the list that
appears. Select an action in the list and press Enter to insert it into your test.

Achiong
ran
FPauzeTestplan -
R aizeE woeption
RandomPaszF alF ealcd —
RandomPaszFealbd
FetumBealdmray bl

Thelist of actions that appearsin thisbox isthe same as the list that appears
in the Insert Action box. Likethe list of actionsin the Insert Action box, the
contents of thislist depend upon the setting for search paths.

Tip: Choose the Move Up and Move Down buttons to rearrange the order in
which actions appear in thelist.

Tip: Choose the Details button to examine the action’s definition.

To Specify Parametersfor Actionsin a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor

window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for TegtSikname>'.

3. Edit the characteristics of a parameter in the list under Parameters for

‘<action name>'.

You can click a row under Value and chooseg button to invoke a

separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

Tip: If the name of a parameter is italicized, its associated value is the
default specified when the action was created. If it is not italicized, the

default value has been overridden by a new value.

66

Note

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

Tip: If the name of a parameter appears as bold text, that parameter
returns aresult.

Tip: Right-clicking on a parameter invokes a menu from which you can
edit the parameter’s value, associate the parameter with a symbol in a
symbol table, or reset the parameter’s value to its default.

Tip: An @ sign precedes the names of parameters that reference items in
symbol tables.

To View Parametersfor Actionsin a Test/Test Group

1.

2.

In the left pane of the Testplan Editor window, select a test or test group.
Choose the Actions tab in the right pane of the Testplan Editor window.
Click an action in the list under Actions for Testest name>'.

Examine the parameter names and values that appear in the list under
Parameters for ‘action name>'.

You can click a row under Value and chooseg button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and examine items directly.

To Specify the Limitsfor a Test

Although you can use an execute action in a test group, an execute action in
a test group cannot return a result for limits checking. Only tests can be used
for limits checking.

In the left pane of the Testplan Editor window, select the test for which
you wish to set limits.

Choose the Actions tab in the right pane of the Testplan Editor window.

. Verify that the execute action chosen to return results for limits checking

in the list under Actions for Testtest name>’ is the one you want. If it

67

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

is not, select the correct one, right-click on it, and choose “Limit check
this measurement” from the menu that appears.

Note: An asterisk (*) appears in front of the name of the execute action
chosen for limits checking.

4. With the desired action selected on the Actions tab, choose the Limits
tab.

5. If you wish to specify a different limits checker for the action that returns
results for the test, choose another from the drop-down list to the right of
“Limit Checker”.

6. Specify the value(s) for the limits.

You can click a row under Value and chooseg button to invoke a
separate editor for the limit or edit each limit directly.

Tip: Right-clicking a limit's name invokes a menu from which you can
edit the limit’s value, associate the limit with a symbol in a symbol table,
or reset the limit's value to its default.

Tip: As a shortcut when specifying parameters and limits, you can choose
the Limits button on the Actions tab and quickly switch to a view of the
action’s limits without leaving that tab. To return to viewing the action’s
parameters, click the action in the list of actions.

To Remove an Action from a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor
window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for Teggsikhame>'.

Tip: You can select an inclusive range of actions by holding the Ctrl key
and clicking at the start of the desired range, holding the Shift key
without releasing the Ctrl key, and then clicking at the end of the desired
range. Alternatively, you can select multiple items by holding the Ctrl
key and clicking individual actions.

3. Choose the Delete button.

68

Working With Tests & Test Groups
To Save a Test Definition in a Library

To Savea Test DefinitioninaLibrary

Saving test definitionsin alibrary lets you reuse them as needed, which
reduces the amount of work required to create new testplans.

1. With atest selected in the left pane of the Testplan Editor window,
choose File | Save Test Definition in the menu bar.

2. Inthe Test Namefield of the Save a Test Definition box, specify a name
for the test.

3. If thetest has multiple variants, use the list to choose the variant for the
version you wish to save.

4. (optional) In the Author’'s Name field, enter the name of whoever created
the test.

5. (optional) Enter the test’s version number, if it has one.

6. (optional) Enter adescription of the test.

7. (optional) Select one or more keywords, one at atime, in the list under
Available and choose the Add button to copy them to the list under
Selected Keywords.

Tip: If desired, you can click the blank areain the list under Selected
Keywords and create new keywords by typing them there.

See “How Keywords Simplify Finding Items in Libraries” in Chapter 5
for more information about keywords.

8. Choose the OK button.

9. When the Save As box appears, specify a file name in which to save the
test.

10.Choose the Save button.

69

Note

Working With Tests & Test Groups
To Save a Test Definition in a Library

Although entering optional information is more work initially, it can save
time when you reuse code. For example, knowing the author's name tells
you who to contact if you have a question about the test. Or, being able to
search by keyword makes it easier to find specific tests later.

70

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups

To Pass Results Between Tests/Test Groups

If desired, you can pass the results from one test or test group to ancther test
or test group. A result is passed as a parameter to an action.

1

With atestplan loaded, in the left pane of the Testplan Editor window
select the test or test group from which you wish to pass results.

Choose View | Symbol Tables in the menu bar.

When the Symbol Tables box appears, use it to declare anew variable in
either the Sequencel. ocals symbol table or in an external symbol table.

Note: If you use the Sequencelocals symbol table, be sure the sequence
shown in the left pane of the Testplan Editor window is the desired one.
You cannot use Sequencelocals to pass results between sequences.

For information about declaring variables, see “Specifying the Properties
for Parameters & Symbols” in Chapter 3 of Geiting Sarted book. For
information about the mechanics of using symbol tables, see “Using
Symbol Tables” in Chapter 5.

In the right pane of the Testplan Editor window, select an action (in the
list under Actions for Test test name>’ on the Actions tab) that has a
parameter you wish to pass from the test or test group selected in the left
pane.

Click the Name of the parameter in the list under Parameters for
‘<action name>’.

Click thelZ‘ button to invoke the editor for the parameter.

. When the editor appears, enataferences a symbol if it is not already

enabled.

Use the Available Tables list to select the symbol table that contains the
shared variable you created earlier.

71

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups

9. Usethe Available Symbolslist to select the name of the shared variable
you created earlier.

10.Choose the OK button.

11.1n theleft pane of the Testplan Editor window, select the test or test group
that is to receive the results.

12.1n the right pane of the Testplan Editor window, select an action (in the
list under Actions for Test test name>’) with a parameter that is to
receive the passed value.

13.Click the Name of the parameter in the list under Parameters for
‘<action name>’.

14.Click thelZ‘ button to invoke the editor for the parameter.

15.When the editor appears, enalgferences a symbol if it is not already
enabled.

16.Use the Available Tables list to select the symbol table that contains the
shared variable.

17.Use the Available Symbols list to select the name of the shared variable
being passed.

18.Choose the OK button.

72

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group

To ShareaVariable AmongActionsin a Test/Test
Group

Declaring avariable whose scopeisatest or test group lets actionsinside the
test or test group share that variable.

1. With atestplan loaded, in the left pane of the Testplan Editor window
select the test or test group whose actions are to share alocal variable.

2. Choose the Edit Symbols button on the Actions tab in the right pane of
the Testplan Editor window.

3. When the Symbols for Test/Test Groupest/test group name>" box
appears, choose its Insert button.

4. Specify the characteristics of the new, shared variable.

For information about declaring variables, see “Specifying the Properties

for Parameters & Symbols” in Chapter 3 of thetting Sarted book.

5. Choose the OK button in the Symbols for Test/Test Grotgst/test
group name>’ box.

6. Do the following for each action that contains a parameter you wish to

have share the newly defined variable:

a. Select the desired action in the list under Actions for Test/Test Group

‘<test/test group name>’ on the Actions tab.

b. Click the Name of the parameter in the list under Parameters for
‘<action name>’.

c. Click thelZ‘ button to invoke the editor for the parameter.

d. When the editor appears, enataierences a symbol if it is not
already enabled.

e. Select TestStepLocals from the Available Tables list.

73

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group

f. Usethe Available Symbolslist to select the name of the variable you
created earlier.

g. Choosethe OK button.

74

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

Controlling Switching During a Test/Test Group

Switching is dependent upon switching topology, which defines atest
system’s switchable connections. Switching topology is explained in
Chapter 4.

Note The Throughput Multiplier feature, which lets you use a single set of
hardware resources and a single testplan to test multiple UUTs, enhances the
functionality of switching actions beyond what is described below. For more
information about the effects of the Throughput Multiplier on switching
actions, see Chapter 10.

Overview of Creating a Switching Action

If you are using hardware handler software to model your test system's
switching hardware and you have used the Switching Topology Editor to
describe your topology to the Test Executive, you can:

1. Use the upper section of the right pane of the Testplan Editor window to
insert a switching action into your test or test group, as shown below.

Test Mame: INewTesH

Surmrnary: I

Test Parameters | Actions |Limits I Dptionsl Documentatiunl

Achions Ihzert...

Delete

0

Up Croweatny

=
[

Details

Lippik Ehecker:l I

Inzert Switching

!

r Degcription of "Switching"

2. Use the lower section of the right pane of the Testplan Editor window to
specify the connections needed for the test or test group as well as what

75

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

action the switching paths should take at the beginning and end of the test
or test group: open, close, or restore the previous state.

~ Parameters for "Switching”

Mame Walue
B Path [1) Met_snkd L0 | Metwilk_Chl

g Add Path.. | Select and press .. to add nodes

.-i'«t Setup 1 - Close
[zt Clearup |3 - Restore

To Create a Switching Action

1. Intheleft pane of the Testplan Editor window, select the test or test group
to which you wish to add a switching action.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Click the desired insertion point in the list under Actions for Test/Test
Group ‘<est/test group name>'.

Tip: Use the Up and Down buttons to rearrange items in the list of
actions.

4. Choose the Insert Switching button on the Actions tab.

5. Repeat the following steps for each switching path you wish to add to the
switching action:

a. Click the field labeled “Select and press '..." to add nodes” to the right

of Add Path under “Parameters for ‘Switching™.
b. Click thelZ‘ button to invoke the Path Editor.
c. Use the Path Editor to specify the switching path.

For more information about specifying switching paths, choose the
Help button in the Path Editor

76

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group
6. Choose the OK button in the Path Editor.

7. Choose an option for At Setup to specify what happens to this group of
switching paths when the test or test group begins:

Connect Paths Switching paths will be closed

Disconnect Paths Switching paths will be opened

8. Choose an option for At Cleanup to specify what happensto this group of
switching paths when the test or test group ends.

Connect Paths Switching paths be closed
Disconnect Paths Switching paths will be opened

Undo Setup Paths Switching paths will be restored to the state they
were in prior to the test or test group; i.e.,
whatever was done for At Setup will be undone

To Delete a Switching Action

1. Intheleft pane of the Testplan Editor window, select the test or test group
that contains a switching action you wish to delete.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Click the switching action to be removed from the list under Actions for
Test/Test Group ‘test/test group name>'.

4. Choose the Delete button on the Actions tab.

To Modify a Switching Path in a Switching Action

1. Onthe Actions tab in the right pane of the Testplan Editor window, select
a switching action by clicking it in the list under Actions for Test/Test
Group ‘<est/test group hame>'.

77

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

2. Madify the switching path as needed. For any existing path, you can:
a. Click inthefield under Value to the right of the name of the path
b. Click the IZI button to invoke the Path Editor.
¢. Usethe Path Editor to modify the path.

For more information about specifying switching paths, choose the
Help button in the Path Editor

To Delete a Switching Path in a Switching Action

You delete an existing switching path by setting its value to nothing.

1. OntheActionstabintheright pane of the Testplan Editor window, select
aswitching action by clicking it in the list under Actions for Test/Test
Group ‘<est/test group hame>'.

2. Click in the Name field under Parameters for Actiofiction name>' for
the switching path to be deleted.

3. Press the Del key on your keyboard.

78

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants

Specifying Variationson Tests/Test GroupsWhen
Using Variants

Overview

Each variant of atestplan lets you create a potentially unique variation on
the parameters and limits associated with the tests and test groups in that
variant. Because they let you use one testplan with n different sets of test
limits and parameters, variants are useful where one UUT isvery similar to
another except for dlightly different values for its test limits or parameters.

The general procedure for specifying the characteristics of tests or test
groups when using variantsis.

1. Choose atestplan variant
2. Choose atest or test group
3. Specify the characteristics of the test or test group for that testplan variant

L ater, when running the testplan, you can specify which variant to use.

To Specify a Test/Test Group’s Characteristics for Each
Variant

Repeat the following steps for however many variants your testplan has.
1. Choose Options | Testplan Options in the menu bar.

2. On the Execution tab in the Testplan Options box, choose a variant from
the list under Testplan Variant and choose the OK button.

3. Sdlect atest or test group in the left pane of the Testplan Editor window.

4. Usethe features on the tabsin the right pane of the Testplan Editor
window to specify the characteristics for this variation of the test or test

group.

79

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants

Tip: If you would simply like to examine the characteristics of tests or test
groups for each testplan variant, follow the steps above but do not change
anything.

For a conceptual overview of variants, see “Testplan Variants” in Chapter 3
of the Getting Sarted book. For information about creating or modifying
variants of testplans, see “Using Variants in Testplans” in Chapter 1.

80

Working With Tests & Test Groups
Viewing the Test Execution Details

Viewing the Test Execution Details

Overview

The Test Execution Details window lets you view the details of what will
happen when atest or test group is executed. The routinesinside actions are
listed in the order in which they are executed.

Refer to the example of atestplan shown below.

Testplan Sequence: I b ain LI

testgroup /0 Configure

testgroup Tirme Domain
test Check Period
test Check Risetime
tezst Check Volkage Peak to Peak
test Check Frequency
test Check, Overzhoot
end testgroup

end teztgroup

Suppose the following list of actions appeared in the test group named
“Time Domain.”

Test Group Parameters | Actions | Documentation I

Actions for Test Group 'Time Domain'

Iritialize Module
Digitize Signal
Switching

81

Working With Tests & Test Groups
Viewing the Test Execution Details

An annotated example of how the Test Execution Details window would
look when examining this test group looks like this:

Test Execution Details [x|

-]

SETUP OR EXECUTE:

Bchion Foutine

Open [nztrurment [0_Opern_Module setup component in setup/cleanup

Initialize Maodule Initialize_Module execute action

Dig.itizec Signal Dig_itizg_Wavefnrm execute action

Switching Switching setup component in switching
CLEAMLIP .

Ao F autine >> testsinside the test group execute here <<

Switching Switching cleanup component in switching —

Open [nstrument

|0_Close_Module cleanup component in setup/cleanup—

The window contains two columns. The left column lists the names of
actionsin the test or test group, and the right column lists the names of
routines in those actions. The information is further organized into rows that
list the actions and their components in the order in which they are executed.

The Test Execution Details window shows that the test group in the example
contains four actions: Open | nstrunent,lnitialize Mdule,
Digitize Signal,andoneswitching action. The action named Cpen

| nst runent isasetup/cleanup action because it is listed under both
SETUP OR EXECUTE and CLEANUP. BothI niti ali ze Mdul e and
Di gitize Signal areexecute actions because they appear only under
SETUP OR EXECUTE, and not under CLEANUP.

Notice how it is implied that the test group’s setup components and execute
actions are executed before the tests inside the test group, and that the test
group’s cleanup components are executed afterward. Although the execution
details of tests inside the test group do not appear in this listing, you could
select those tests individually and view their test execution details.

82

Working With Tests & Test Groups
Viewing the Test Execution Details

To View the Test Execution Details

1. With atestplan loaded, click atest or test group in the left pane of the
Testplan Editor window.

2. Choose View | Test Execution Details in the menu bar.

3. When you have finished examining the details of the test or test group,
choose the OK button.

83

Working With Actions

This chapter describes how to use actions, which are components used to create
tests.

For an overview of actions, see Chapter 3 in the Getting Sarted book.

85

Note

Note

Working With Actions
Things to Know Before Creating Actions

Thingsto Know Before Creating Actions

Thetopicsin this section apply to all types of actions. Subsequent sections
describe how to create actions in specific programming languages.

HP TestExec SL includes some predefined actions for your use. Look in
directory “<HP TestExec SL home>\Actions” for subdirectories whose
names indicate the kinds of actions they contain, such as math or string
manipulation functions. To learn more about these actions, look under
Predefined Actions” in the table of contents for HP TestExec SL's online
help.

How Do | Create Actions?

An action consists of two discrete components: a definition that describes

the action’s characteristics to the Test Executive envirori'mmm action
routines (code) that each do one or more tasks.

Action

Definition

Routines

Given the model above, creating an action is a two-part process:

1. Creating the action definition.

1. It may help if you think of defining an action as using the Action Definition
Editor to “register” the action with the Test Executive.

86

Working With Actions
Things to Know Before Creating Actions

You use the Action Definition Editor to define the action’s characteristics
and identify (but not write) the underlying code associated with the
action. Each action definition contains the following information:

» The action “style,” which adjusts the Action Definition Editor’s
behavior to match your choice of programming language.

* The name of the action.

e The name of the DLL or other library file in which the action’s
executable code resides.

* The name of the action’s author.
e A description of the action.

» Keywords that help when searching for the action if someone wishes
to reuse it later.

e The type of action routine—execute or setup/cleanup. (Typically,
most of the actions you use will be execute actions.)

» Definitions of parameters used in the action, including their data
types, default values, and descriptions.

2. Creating the action routines.

You use the editor, debugging tools, and environment of your chosen
programming language to write the code for action routines.

In most cases, you can do these two main steps in any order. For example,
you may prefer to write the action routine first and then create a definition
for it later.

Which Languages Can | Useto Create Actions?

You can write action code in:

e Visual C++ Version 2.0 or higher, 32-bit versions only. (Highly
recommended)

87

Working With Actions
Things to Know Before Creating Actions

e Borland C++, Version 4.0 or higher, 32-bit versions only.
« HP VEE, Version 3.2 or higher for Windows 95.
« National Instruments LabVIEW, Version 4.0 or higher for Windows 95.

« HP BASIC for Windows 6.3.x.

Note You can freely mix actions in various languages so long as they do not
access the same instruments within the same testplan. This restriction is
necessary because each language is unaware of the other. For example,
suppose an action written in C sets an instrument to a particular state.
Because it operates in a separate environment, a subsequent action written in
HP VEE would be unaware of that state and might inadvertently change it.
And, of course, if another C action followed the HP VEE action, it would
not be aware of any changes made in HP VEE.

I mproving the Reusability of Actions

Designing for Reusability

HP TestExec SL has features that help you reuse action definitions and
action routines. To maximize the potential for reusing actions, keep the
following in mind when creating them:

e Use a directory structure to organize similar actions into libraries.

For more information about libraries, see “Using Test & Action
Libraries” in Chapter 5.

» Use the Action Definition Editor's documentation features—keywords,
action naming, action descriptions, and parameter descriptions—as an
aid to making actions easy to find and use in each library.

« Reuse or modify an existing action whenever possible. Write new actions
only when no other existing action will work.

88

Note

Working With Actions
Things to Know Before Creating Actions

You can add new parametersto an existing action and have existing tests that
use that action continue to work. Simply specify adefault value for each new
parameter. Because existing tests will not override the default values of new
parameters, the modified action will mimic its previous behavior.

« Short actions that do a single task have greater reusability than more
complex actions. When possible, break larger test operations into a
shorter series of simple actions.

« Design commonly used actions for use by multiple test sequences. For
example, if you have more than one test sequence that requires setting up
a digital-analog converter, you could create a separate action that does
the converter setup. You could then use that setup action in each of the
test sequences that use the converter.

e Use hardware handler software whenever possible (described in
Chapter 4).

Documenting Your Actions

Choosing Namesfor Actions

Each action consists of a definition file and a file that contains the action's

executable codéHaving a sensible and consistent naming convention helps
you organize and describe actions, which makes them self-documenting to
some extent. For example, you might use the convention of combining the
action name with the step where the routine will be used in the action, such
as “MyAction_Execute” or “MyActionSetup”. Or you could use the name of
the action to describe what the action does, such as “Trig\Volt” for an action
that triggers a voltage source or “MeasVolt” for an action that measures a
voltage.

For consistency, we recommend that you give the definition file the same
name as the action, followed by the extension “.umd”—for example,
“DMMSetup.umd”. Then name the code file in accordance with the action’s
function, followed by whichever extension is appropriate for the language in

1. Thecode canresidein alibrary that also contains code for other actions.

89

Working With Actions
Things to Know Before Creating Actions

which the action is written.! An example of this might be “DMMSetup.dlIl”
for an action written in C.
Entering Descriptionsfor Actions

The Action Definition Editor lets you enter a textual description of each
action. The description should contain such information as:

« A description of what the action does.

« The action's context, such as whether it is doing a setup, execute, or
cleanup function.

« Alist of any limitations.

» Alist of any special instructions, such as required switching or
accompanying actions.

For example, if you had an action that named “adcConfArm”, you could add
the description, “Configures the arming subsystem of the analog to digital
converter.”

Entering Descriptionsfor Parameters

You can use the Action Definition Editor to add a textual description to each
parameter in the definition of an action. In the description, you should tell
what the parameter does, its units of measure, and its range of valid values.

Choosing Keywords for Actions

As you create actions, you will probably store them in libraries from which
they will be used to create tests in the Test Executive environment. By
letting you associate one or more searchable keywords with each action, the
Action Definition Editor helps you quickly locate actions in libraries.

1. If you create actionsin HP BASIC for Windows, all the actions for agiven
testplan must reside in asingle file (server program). You may wish to give
that file the same name as the testplan with which it is used.

90

Working With Actions
Things to Know Before Creating Actions

The keyword feature works best when you follow these rules:

Always assign keywords to actions. This speeds up the search features in
the Test Executive environment.

Use keywords from the predefined master list of keywords whenever
possible. Adding too many keywords increases the length of the search
list, which makes it harder to find a specific action. In general, you
should have fewer keywords than actions.

Add a keyword to the master list only if you can use it for other actions.

If you must create a new keyword, make sure the keyword is meaningful
and that it describes the action.

91

Working With Actions
To Define an Action

To Define an Action

Use the Action Definition Editor to create an action definition. The general
procedure for defining an action in all supported programming languagesis
described below. Subsequent topics describe the nuances of defining actions
in specific languages.

1. Choose File | New in the menu bar.
2. Choose “Action Definition” from the list.
3. Choose the OK button.
4. Choose an action style from the list, which contains:
DLL Style Action is written in in C/C++
HP VEE Action is written in HP VEE
LabVIEW Action is written in National Instruments LabVIEW
HP RMB Action is written in HP BASIC for Windows
5. Choose the OK button.
6. In the Name field, type the name of the action.

Tip: Choose a meaningful name that will help when you search for the
action later.

7. (optional) In the Author field, type your name to identify you as the
action's author.

8. In the Library Name field, type the name of the executable library file
(such as a DLL) that contains the action routines associated with this
action.

92

Note

Working With Actions
To Define an Action

Leave the Library Name field blank if you are defining an action created in
HP BASIC for Windows.

9. (optional) In the Description field, type a description of the action.

Tip: A useful description tells what the action does, gives the context in
which the action is used (such as whether it is doing a setup, execute, or
cleanup function), lists any limitations, and includes any special
instructions, such as required switching or accompanying actions.

10.(optional) Do either of the following to make it easier to locate the action
in an action library:

a. Select amaster keyword from the predefined list.

b. Choose the Add button adjacent to the list of keywords to add the
keyword to the action.

-0r -

a. If none of the existing master keywords fits the action, type a new
keyword in the keyword field.

b. Choose the Add button adjacent to the list.

c. If thiskeyword will be useful with other actions, choose Edit | Add
Master Keyword in the menu bar.

11. Choose the Setup/Cleanup or Execute button to specify which kind of
action you are defining.

12.Type the names of one or more routines, functions, or subprograms
associated with this action (Setup, Execute, & Cleanup fields).

Tip: Useful, descriptive function names often combine the action name
with the step where the function will be used in the action, such as
“MyAction_Execute”.

93

Note

Note

Working With Actions
To Define an Action

13.Add parameters as needed by choosing the Add button at the bottom of
the Action Definition Editor and specifying their properties.

For more information about specifying parameters, see “Using
Parameters with Actions.”

14 (optional) Specify auditing information by choosing File | Revision
Information in the menu bar and entering descriptive information in the
Action Revision Information box.

15.When you have finished defining the action, choose File | Save in the
menu bar, specify a name for the new action definition, and save it.

Not all parameter types can be used with all programming languages. Any
restrictions are noted in the topics that describe how to create actions in
specific languages.

If you choose “HP VEE” as the action style, an additional Debug check box
appears. Checking this box lets you start HP VEE in debug mode so you can
debug actions created using HP VEE. After you have finished debugging
your actions, unselect this box to return to HP VEE's run-time mode.

94

Working With Actions
Using Parameters with Actions

Using Parameter s with Actions

Thetopics in this section describe the data types supported when passing
datain parameters to actions and the mechanics of using the Action
Definition Editor when working with parameters.

Types of Parameters Used With Actions

Each time an action is executed, the Test Executive can pass it one or more
parameters or a pointer to a group—called a “block”—of named parameters.
Passing specific parameters or a parameter block to the routines in an action
creates a unigue instance of the action. For example, an action that sets up a
power supply might be passed parameters that define voltage and current
settings.

95

Working With Actions
Using Parameters with Actions

Overall, the Action Definition Editor supports these types of parameters for

actions:;

Iype

Complex

Inst

Int32
INt32Array
Node
Path

Point

PointArray

Range

RangeArray
Real64
Real64Array
Real64Expr
String
StringArray

Description

Real — The real or magnitude component of a complex
number.

Imaginary—The imaginary or vector component of a
complex number.

The identifier for an instrument.
A 32-bit integer.

An array of 32-bit integers.
(reserved for future use)

A Switch Configuration Editor path name representing a
single switching path.

A pair of 64-bit real numbers, consisting of an X value and
a 'Y value.

An array of point data types, where each element consists
of an X value and a Y value.

A means of storing data that has a beginning, an end, and
an incremental step size, such as frequency sweep data.

An array of ranges.

A 64-bit real number.

An array of 64-bit real numbers.

The value of a 64-bit real expression.

A group of characters that make up a string.

An array of strings.

For more information about data types and how they are used, see Chapter 1
in the Reference book.

96

Note

Working With Actions
Using Parameters with Actions

Which specific parameter types you can use in an action definition depends
upon which action style you choose. Action styles are described in greater
detail later.

Properties you can define that are associated with parameters include:

Value Sets literal values for parameters.

Reference Selects a value by referencing the name of a symbol in a
predefined symbol table. For example, you could select an
instrument name from a hardware configuration table.

Note: Your ability to edit some parameters depends on the
“SymVal” security setting for your user login name or
group. See “Controlling System Security” in Chapter 6.

Output Designates parameters that will return results. You can
designate only one output per action definition. (Use array
parameters to pass multiple results.)

Note: You should only designate parameters of type Int32,
Int32Array, Real64, Real64Array, String, or StringArray as
Output because automatic limits checking is restricted to

these types.
Restrict For some data items, specifies the low and high limits for
Value permissible values for a data item or for all elements in an
array.
Arrays Specifies arrays of up to three dimensions for Int32, Point,

Range, Real64, and String data types. You can specify
values, designate values by reference, set point values, or
set range values for each element in an array.

To Add a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, choose
the Add button at the bottom of the Action Definition Editor.

2. Specify the parameter’s characteristics.

97

Note

Working With Actions
Using Parameters with Actions

You can click arow under Value and choose the IZI button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapter 3
of the Getting Sarted book for general information about specifying
parameters.

If desired, more than one parameter in your action can return a result; i.e.,
more than one parameter can have its Action Output box checked in the
editor used to specify that parameter’s characteristics. If more than one
parameter returns a result, use the drop-down list to the right of “The current
result is:” to specify which parameter’s result should be used for limits
checking.

Tip: When working with a list of parameters, you can use the Move Up and
Move Down buttons to reorder the list.

To Modify a Parameter to an Action

1.

With an action definition loaded in the Action Definition Editor, click a
parameter in the list under Action Parameters.

Modify the parameter’s characteristics as needed.

You can click a row under Value and chooseg button to invoke a
separate editor for the parameter or expand the tree view of the
parameter’s characteristics and edit items directly.

See “Specifying the Properties for Parameters & Symbols” in Chapter 3
of the Getting Sarted book for general information about specifying
parameters.

98

Caution

Working With Actions
Using Parameters with Actions

To Delete a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, click a
parameter in the list under Action Parameters.

2. Choose the Delete button at the bottom of the Action Definition Editor.

If you delete a parameter and exit the Action Definition Editor without
resaving the action definition, your change will be discarded.

99

Note

Note

Working With Actions
Using Keywords with Actions

Using Keywordswith Actions

The next severa topics describe the mechanics of working with keywords,
which you associate with actions to make specific actions easier to find
when searching libraries of actions.

To Add a Keyword to an Action
1. Do either of the following in the Action Definition window:
» Select a keyword from the list of master keywords.
-or -
« If none of the predefined master keywords fits the action, type a new
keyword in the keyword box. The new keyword should clearly

identify the action's purpose. Typical keywords might be measure,
setup, instrument, or stimulus.

You can assign multiple keywords for an action.

Use existing master keywords whenever possible. Adding too many new
keywords can make it harder to find actions if the list of keywords becomes
too long to browse conveniently.

2. Choose the Add button adjacent to the list of keywords.

To Delete a Keyword from an Action

1. Inthe Action Definition window, click on the keyword you want to delete
from the list of keywords for the current action.

2. Choose the Delete button adjacent to the list of keywords.

100

Working With Actions
Using Keywords with Actions

To Add a Master Keyword totheList
1. Do either of the following in the Action Definition window:
« Select a keyword from the list of keywords for the current action.
-or -
« Type a new keyword in the keyword box.

2. Choose Edit | Add Master Keyword in the menu bar.

Note Minimize the number of master keywords that you add. Keywords are most
useful when developers in an organization agree upon a standard, compact
set of keywords whose meaning is specific.

To Deletea Master Keyword from the List

1. In the Action Definition window, select a keyword in the list of master
keywords.

2. Choose Edit | Delete Master Keyword in the menu bar.

101

Note

Working With Actions
Creating Actions in C

Creating Actionsin C

Although most of this section describes using Visual C++ to create action

code, you do not need to know C++ to create actions. Some topics describe

C++ functionality for those who are familiar with C++, but in most cases

you can simply follow the exampl es and make your code work. Typically, all

you are doing is using a C++ compiler to produce C-like code; i.e., you are

not using the C++ extensions to the C language. Thus, when you see

reference to a “C action” it may help if you think of it as “C-like action code
written using a C++ development environment.”

The action routines in a C action reside in a DLL whose code you write and
compile. Each DLL can contain one or more action routines and, if desired,

you can add new actions to an existing DLYou must decide how many or
how few action routines to include in a single DLL.

What are the trade-offs? Using many small DLLs—for example, one DLL
per action routine—causes testplans to load more slowly than having one
large DLL that contains many action routines. However, using one large
DLL reduces the modularity of your test system. We recommend using a
single DLL to hold a logically related set of action routines, such as routines
that make DC measurements.

Overview of the Process

The general process to follow when creating an action in C is:

1. Use HP TestExec SL's Action Definition Editor to define the action by
specifying the name of the routine (or names if using a setup/cleanup
routine), parameters, descriptions, and keywords.

For more information, see “To Define an Action.”

1. The system DLLs supplied with HP TestExec SL are read-only, and you
should not add new action routines to them.

102

Note

Note

Note

Working With Actions
Creating Actions in C

2. Use your C/C++ environment to create a header file (“.h”) that declares
the functions in your actions and an implementation file (“.cpp”) to
contain the action source code.

Be sure to enclose your action code ireabhern " C' declaration, as
shown in the examples, to prevent C++'s type-safe linkage scheme—i.e.,
“name mangling”—from causing problems when linking.

3. Write the code for the action routine.
4. Compile the source code to build a DLL.

5. Test/debug the DLL as needed.

Your C/C++ environment does not need to be running while you use
HP TestExec SL unless you are debugging an action and want to set
breakpoints in the C/C++ environment.

Writing C Actions

C actions use the DLL action style, which passes named parameters in a
block or collection that is a C structure. Instead of specifying each parameter
in a formal list, you pass a handle to the entire parameter block. Unlike a
formal list of parameters, individual parameters in a parameter block are
referenced by name and not by position.

Besides containing parameters used to pass values to action routines,
parameter blocks also can contain parameters that return results used for
limits checking. Thus, your C action code should not use an explicit “return”
statement to return a value.

Using Parameter Blocks With a C Compiler

If you do not have a C++ compiler, you can use DLL style actions by using
an API to access parameter values from a C compiler. The API provides a
function for getting the value of each parameter type. The form for the
function name is “UtaPbGet” or “UtaPbSet” plus the name of the parameter

103

Working With Actions
Creating Actions in C

type. For example, the following lines of code declare a variable whose type
is double and return avalue to it from a parameter named MyPar min a
parameter block.

doubl e dMyVari abl e;
Ut aPbGet Real 64(hPar nBl ock, "MyParnt, &JIMyVari able);

Listed below are the various API functions and the types of parameters with
which they are used.

This function name . . .

Gets/Sets a value for this parameter type

UtaPbGetComplex Complex
UtaPbSetComplex

UtaPbGetlnst Inst
UtaPbSetinst

UtaPbGetInt32 Int32
UtaPbSetiInt32

UtaPbGetInt32Array Int32Array
UtaPbSetInt32Array

UtaPbGetNode Node
UtaPbSetNode

UtaPbGetPath Path
UtaPbSetPath

UtaPbGetPoint Point
UtaPbSetPoint

UtaPbGetPointArray PointArray
UtaPbSetPointArray

UtaPbGetRange Range
UtaPbSetRange

UtaPbGetRangeArray RangeArray
UtaPbSetRangeArray
UtaPbGetReal64 Real64
UtaPbSetReal64

104

UtaPbGetReal64Array
UtaPbSetReal64Array

UtaPbGetReal64Expr
UtaPbSetReal64Expr

UtaPbGetString
UtaPbSetString

UtaPbGetStringArray
UtaPbSetStringArray

Working With Actions
Creating Actions in C

Real64Array

Real64Expr

String

StringArray

The following example shows how to use the API functions to access

parameter blocks.

Note To understand the differences between using C and C++ compilers, you may
find it useful to contrast this example with the similar example described
later under “Using Parameter Blocks With a C++ Compiler.”

/1l C action routine to programa DVM & return a reading.
/1 Paraneter block was defined with these paraneters:

/1 Resul t - Ut aReal 64
/1 Function - Utalnt32

/1l Note: Use this routine with a C conpiler.

#i ncl ude <sicl. h>
#i ncl ude <uta. h>

#def i ne DEVI CE_ADDRESS " hpi b7, 23"

{

voi d UTADLL read_dvm (HUTAPB hPar nBl ock)

{
| ong | DVM Functi on;

/! HP TestCore APl functions are used to return val ues

/1 fromthe paraneter bl ock.

Ut aPbGet | nt 32(hPar nBl ock, "Function", & DVM Function);

105

Working With Actions
Creating Actions in C

doubl e dRdg;

I NST instlD

instlD = iopen (DEVI CE_ADDRESS) ;

iprintf (instlD, "FY¥%WRAN3T3\r\n" , |DVM Function);

iscanf (instID, "%f\r\n" , &IRdQ);

Ut aPbSet Real 64(hPar nBl ock, "Result", dRdQg);
iclose (instlD);

_siclcleanup();

}

For more information about the API functions used in the example, see the
Reference book.

Using Parameter Blocks With a C++ Compiler

When you use a C++ compiler, HP TestExec SL's parameter types are
defined as C++ classes that behave like ordinary C data types. This lets you
write normal C code in action routines, except that variable declarations look
slightly different.

When you declare a normal variable in C/C++, its declaration looks like this:
<data type> <variable name>;

An example of this is:

| ong | MyVari abl e;
The syntax used when declaring variables for parameter blocks with a C++
compiler in HP TestExec SL looks like this:

<data type> <variable name> (<handleto parameter block>, <parameter
name or ID>);

The definition syntax lets you look up a parameter either by name or by ID.
An example of this is:

IUtaInt32 | MyVari abl e(hPar nBl ock, "MParaneter")

Here,l Ut al nt 32 is the C++ class that HP TestExec SL uses for long
(32-bit integer) datd. MyVar i abl e is the name of the variable being
declaredhPar Bl ock is the handle to a parameter block that contains
parameters being passed into the action roltipBar anet er is the name

106

Working With Actions
Creating Actions in C

of a parameter (defined with the Action Definition Editor) in the parameter
block whose valueisto be passed to this variable.

What about other data types? The list below shows the correspondence
between the names of the C++ classes and the types of parameters supported

by HP TestExec SL.

This C++ class. . .

IUtaComplex
IUtalnst
IUtalnt32
IUtalnt32Array
I[UtaNode
IUtaPath
IUtaPoint
IUtaPointArray
IUtaRange
IUtaRangeArray
IlUtaReal64
IUtaReal64Array
IUtaReal64Expr
IUtaString
IUtaStringArray

IUtaWaveform

Corresponds to this parameter type

Complex
Inst

Int32
INnt32Array
(reserved)
Path

Point
(reserved)
Range
(reserved)
Real64
Real64Array
(reserved)
String
StringArray

Waveform

107

Working With Actions
Creating Actions in C

What might an example of using a parameter block look like? Suppose you
used the Action Definition Editor to define an action whose parameter block
contained these parameters:

Parameter Name Parameter Type

Addendl Int32
Addend2 Int32
Sum Int32

As defined in the Action Definition Editor, the parameter block might look
likethis:

r&ction Parameters

The curent result is: |Sum LI
Mame Yalue |Data Type Diescription
.-’-'-.ddend'l 1] Integer [32 bit] |Firzt number to be added

[z Addend2 |0 [rteger [32 bit) | Second number to be added
m 1] Integer [32 bit] [Sumn of bwo numbers

Inside an action routine written using a C++ compiler, you could then use
the specia declaration syntax to define three C variables corresponding to
the parameters, like this:

| Utalnt32 | Addend1(hPar nBl ock, "Addendl");
| Utalnt32 | Addend2(hPar nBl ock, "Addend2");
| talnt32 | Sunm(hPar nBl ock, "Suni);

This declaration associates parameters in the parameter block with variables
inside the action routine. After declaring the variables, you can use them as
you would normal C variables of the corresponding type. For example, you
canusel Addendl, | Addend2, and| Sumaslongs (32-bit integers).

Shown below is an excerpt from a simple action routine that uses the
parameter block and variable declarations described above to add two
integers and return their sum.

108

Working With Actions
Creating Actions in C

extern "C" { // Prevent C++ conpiler from using name mangling
voi d UTADLL AddTwol nt eger sExecut e(HUTAPB hPar nBl ock)

{

/1 Declare local variables & associate themw th paraneters
/1 in paraneter bl ock.

| Ut al nt 32 | Addend1(hPar nBl ock, "Addendl");

| Utalnt32 | Addend2(hPar nBl ock, "Addend2");

| Utalnt32 | Sunm(hParnBl ock, "Suni);

/1 add the val ues together
| Sum = | Addend1l + | Addend2;
}

Something important to note here is that the result, Sum isreturned viaa
parameter in the parameter block and not through a return data type—i.e.,
there is no explicit “return” statement that returns the result. When using
parameter blocks, all passing of values between action code and

HP TestExec SL is done via parameters in the block.

A more extensive example of using parameter blocks looks like this:

/1l C action routine to programa DVM & return a reading.
/1l Note: Use this routine with a C++ conpiler.

#i ncl ude <sicl. h>
#i ncl ude <uta. h>
#defi ne DEVI CE_ADDRESS " hpi b7, 23"

extern "C

{

voi d UTADLL read_dvm (HUTAPB hPar nBl ock)
{

/'l Use special syntax to declare two variables and associ ate them
/1 with parameters in the paraneter bl ock.

| Ut aReal 64 dDVM Resul t (hPar nBl ock, "Result");

| Utalnt32 | DVM Functi on(hPar nBl ock, "Function");

109

Working With Actions
Creating Actions in C

I NST instlD
instlD = iopen (DEVI CE_ADDRESS) ;
iprintf (instlD, "FY%WRAN3T3\r\n" , |DVM Function);

iscanf (instID, "%f\r\n" , &IDVM Result);
iclose (instlD);
_siclcleanup();

}
}

The parameter block for the example above looks like this:

Parameter Name Parameter Type

Result Real64

Function Int32
The special syntax for declaring C variabl es corresponding to the parameters
in the example looks like this:

| Ut aReal 64 dDVM Resul t (hPar nBl ock, "Result");
| Utalnt32 | DVM Functi on(hPar mBl ock, "Function");

Given these declarations, you can use dDVM Resul t like adouble and
| DVM Funct i on likealong (32-bit integer).
Some of the C++ classes directly correspond to standard C datatypes, as
shown below.

This C++class ... Corresponds to this C data type

IUtalnt32 int or long (whichever is 32 bits)

IUtalnt32Array int[] or long[] (whichever is 32 bits)

IlUtaReal64 double

IUtaReal64Array doubile(]

IUtaString const char*

Note The Rea 64Expr parameter type istreated as a Real 64 type.

110

Working With Actions
Creating Actions in C

If the HP TestExec SL parameter type does not readily correspondtoa C
datatype, the argument passed to the user routine behaves asiif it is of type
HUTADATA. To access the value of an argument passed as this type, your
action routine must use special access routines defined for that particular
datatype.

The following list shows the correspondence between C++ classes,
parameter typesin HP TestExec SL, and HUTA data types.

C++ Class Parameter Type HUTA Data Type
IUtaComplex Complex HUTACOMPLEX
IUtalnst Inst HUTAINST

IUtaPath Path HUTAPATH

IUtaPoint Point HUTAPOINT
IUtaPointArray PointArray HUTAPOINTARRAY
IUtaRange Range HUTARANGE
IUtaRangeArray RangeArray HUTARANGEARRAY
IUtaStringArray StringArray HUTASTRINGARRAY
IlUtaWaveform Waveform HUTAWAVEFORM

A set of API functions let you access these types of parameters. Also,
additional functions are provided for directly accessing the handles to the
various data types. For more information about these data types, the API
calls used with them, and how to read the syntax of the data types and APIs,
see the Reference book.

Exception Handling in C Actions

Note For an overview of exceptions, see “About Exceptions” ind&ging
Sarted book.

Various functions in the Exception Handling API let you use C actions to
raise and examine exceptions that occur during testing. Because it lets you

111

Working With Actions
Creating Actions in C

handle exceptions at alow level, handling exceptionsin actions can be more
precise than simply letting your testplan branch to an alternate sequence of
tests in the Exception Sequence.

The remainder of this topic shows some of the most useful concepts and
functions in the Exception Handling API. You can find a full list of these
API functions and their descriptions in Chapter 4 of the Reference book.

At the simplest level, the Ut aExcRai seUser Err or () function letsyou
raise a user-defined exception in response to some anticipated error
condition. The example below shows how this works.

/'l Exanpl e causes the following to display in Report w ndow when
/'l encountered while testplan is executing:
/1 Condition raised a user-defined exception! (Severity: 5)

char chMessage [60];

I ong | Severity;

... (do sonet hi ng)

if (sone condition == sone value) |/ raise an exception?

{

strcpy (chMessage, "Condition raised a user-defined exception!");
| Severity = 5;

Ut aExcRai seUser Error (chMessage, | Severity);

}

...(testing is aborted because exception occurred)

As noted in the example’s comments, unless they are specifically received
and handled otherwise, user-defined exceptions simply send a message to
the Report window and abort testing.

However, much of the power in having user-defined exceptions lies in being
able to process them and act appropriately instead of simply aborting testing
the first time an exception occurs. The next example uses several of the
Exception Handling API functions in a more meaningful way.

112

Working With Actions
Creating Actions in C

/'l Exanpl e can raise user-defined exceptions while action is doing

/'l tasks. Each exception has a severity level associated with it. Near
/1l the end of the action, a routine checks to see if exceptions

/1 occurred and receives themif they did. If the severity of an

/'l exception exceeds a threshold, a value of -1 is witten to a

/l parameter named "parml" in the action’s parameter block. If "parm1"

/l'is areference to a symbol in a symbol table, actions in other tests

I/ can access the symbol table to see if this action raised one or more

I/ "serious" exceptions.

HUTAEXC hUtaException;

long ISeverity, INumExceptions, ICounter;

char chMessage[40];

...(do something)

// action routine contains one or more routines to see if an
Il exception condition exists

if (some condition == sone val ue) l/ raise an exception?
{
strcpy (chMessage, "Condition raised an exception!");
ISeverity = 10; // assign severity level to this exception
Ut aExcRai seUser Er r or (chMessage, I1Severity); // raise exception

}

...(testing continues)

...(near end of testing)
if (Ut aExcRegl sError () // if exception(s) exist
{
INumExceptions = Ut aExcRegGet Er r or Count (); // get # of exceptions
Il receive all exceptions & get handle to first in list
hUtaException = Ut aExcRegRecei veError ();
for (ICounter = 1; ICounter <= INumExceptions; ICounter++)
{
if (UtaExcGet Severity(hUtaException) > 5) // test severity
UtaPbSetInt32(hParmBlock, "parm1", -1); // write to parm.
if (ICounter < INumExceptions)
Il get handle to next exception
hUtaException = Ut aExcGet Next Er r or (hUtaException);

k

113

Working With Actions
Creating Actions in C

In asimilar fashion, you can raise, receive, and handle user-defined
exceptions specific to your testing environment. You have the choice of
handling exceptions immediately or, asin the example, postponing their
handling until later.

The API functions used the preceding example are listed below.

This function... Does this...

UtaExcRaiseUserError() Raises a user-defined exception and lets
you specify an error message and severity
indicator to be associated with the
exception.

UtaExcReglsError() Tests for the presence of one or more
exceptions that have been raised but not
yet received.

UtaExcRegGetErrorCount() Returns the number of exceptions that have
been raised and not yet received.

UtaExcRegReceiveError() Returns a handle to the first in a list of
exceptions.

UtaExcGetSeverity() Returns the severity level that was set when
the exception occurred.

UtaExcGetNextError() Given the handle to an exception, returns
the handle to the next exception if more
than one exception has been raised.

HP TestExec SL also has predefined exceptions for such conditions as math
errors, out-of-range values, and array dimensioning errors. These are listed
in the system file “uta.h”.

Using C Actionsto Control Switching Paths

Overview

If you do not use hardware handler software to communicate with switching
modules, you must control switching directly from actions via your chosen
I/O strategy. This requires you to write custom routines that tend to be
complex and may not be reusable.

114

Working With Actions
Creating Actions in C

But if you are using a hardware handler, there are two better waysto control
switching during atest:

* You can use the Test Executive’s Switching Path Editor to graphically
control switching paths at the beginning and end of a test. This is the
easiest method.

« You can use API functions to control switching paths from an action,
which lets you modify switching paths during a test. Because it
requires you to write code, this method is more difficult to use than
the Switching Path Editor. However, it is more versatile because it lets
you explicitly control switching as needed.

When action routines contain code that controls switching paths, they tend to
be specific to a particular implementation of switching hardware. This can
make them more specialized and less reusable than action routines that do
not control switching. In general, you can improve the reusability of actions
by specifying switching at the test level instead of inside action routines.

Using API Functionsto Control Switching Pathss

The C Action Development API contains the following functions you can
use to control switching from a C action routine.

APl Function Purpose

UtaPathConnect() Establishes a switching path

UtaPathDisconnect() Resets all relays in a switching path

UtaPathWait() Waits for the switching relays to close before
returning

The declaration of thet aPat hConnect () function is:
voi d Ut aPat hConnect (HUTAPATH hPat h, BOOL bWiit =TRUE);

Ut aPat hConnect () establishes the switching path specifiechbyt h,

which is most likely passed into the action routine as one of its parameters.
ThebWai t parameter is optional; it defaults to TRUE, but if set to FALSE
the function will return without waiting for relays to close.

115

Working With Actions
Creating Actions in C

An example using Ut aPat hConnect () might look like this:
Ut aPat hConnect (hPath);
The syntax of the Ut aPat hDi sconnect () functionis:

voi d Ut aPat hDi sconnect (
HUTAPATH hPat h,
BOOL bWait = TRUE

)
Ut aPat hDi sconnect () resetsdl therelays along the path. Reset is
defined by the default positions of the switching elements. Thus, the path is
opened. The bWAi t parameter is optional; it defaultsto TRUE, but if set to
FAL SE the function will return without waiting for relays to open.

An example using Ut aPat hDi sconnect () might look like this:

Ut aPat hDi sconnect (hPat h);

The Ut aPat hWai t () function provides away to tell the system to wait
for a specific path connection. Its syntax is:

voi d Ut aPat hwait (HUTAPATH hPat h);
An example that includes Ut aPat h\\ai t () might look like this:

Ut aPat hConnect (hPath, FALSE);
...(do something el se while waiting)
/1l Ensures that path will be cl osed.
Ut aPat hWai t (hPat h);

Notice that unlike using Ut aPat hConnect () by itself withbWai t setto
TRUE, having alUt aPat hWai t () function follow a

Ut aPat hConnect () whosevaluefor bWai t isFALSE letsyou do other
tasks while waiting for the specified switching path, hPat h, to be
established by Ut aPat hConnect ().

116

Working With Actions
Creating Actions in C

HP TestExec SL also providesa Ut aPbGet Pat h() function you can use
to retrieve switching path datafrom parameter blocks and subsequently use
with the functions described above. An example of its use looks like this:

HUTAPATH hPat h;
/1l Get the paraneter specifying the path
hPat h = U aPbGet Pat h (hPar amet er Bl ock, "DcvPat hLow");

/1 Cdose the path
Ut aPat hConnect (hPat h);

|/ Take a neasurenent
/[l ... code that takes a neasurenent

/1 Open the Path
Ut aPat hDi sconnect (hPat h);

For more information, see “Functions for Manipulating Switching Paths
from Actions” in Chapter 2 of thReference book.

Using Statesto Store Switching Data

Using thelt aPat hConnect () andUt aPat hDi sconnect ()

functions to control switching paths is convenient in simple cases, but
requires more work in more complex situations. For example, suppose you
need to set up new paths temporarily and restore them later. This could cause
you to write quite a few lines of code to track the changing states of
switching elements in switching paths.

To remedy this, the C Action Development API provides various
“UtaState...” functions used to create and manipulate “switching states” that
contain one or more switching paths. You can find a complete list of them
and their syntaxes under “Functions for Manipulating Switching Paths from
Actions” in Chapter 2 of thReference book.

Consider the following example, which temporarily stores the state of the
switching hardware, adds to the state of the switching hardware a path
previously stored as “NewPath” in a parameter block, and subsequently
restores the switching hardware to its original state.

117

Working With Actions
Creating Actions in C

HUTASTATE hOriginal State; // variable for handle to switching state
HUTAPATH hPath; // variable for handle to switching path

hOriginal State = UtaStateCreate(); // create enpty switching state
hPat h = Ut aPbGet Pat h(hPar anet er Bl ock, "NewPath"); // get path data
UtaStateMergePathState(hOriginalState, hPath); // define state’s scope
UtaStateUpdate(hOriginalState); // store current state of hardware
UtaPathConnect(hPath); // set hardware to path retrieved from NewPath

// Do tasks while new path is in effect

...(make a measurement, etc.)

I restore the hardware to its initial, stored state
UtaStateRecall(hOriginalState);
UtaStateRelease(hOriginalState); // free memory used by state object

How does the example work? Suppose we begin by using
Ut aSt at eCr eat e() to create aswitching state:

hOriginalState = UtaStateCreate();

In theory, an empty (uninitialized) switching state potentially could store
switching information for an entire test system. However, inreality itis
quicker and more convenient to work with a subset of al possible switching
hardware. A switching path defines just such a subset, so the next line gets
the data associated with an existing switching path stored in aparameter in a
parameter block, likethis:

hPath = UtaPbGetPath(hParameterBlock, "NewPath");

Now we must merge the switching path data with the empty switching state
to define the scope of the switching state; i.e., which specific hardware out
of all possible hardware it describes. To do this, we use

Ut aSt at eMer gePat hSt at e() , as shown below.

UtaStateMergePathState(hOriginalState, hPath);

Now the range of the switching state is restricted to the path specified by the

data retrieved from the parameter named “NewPath”. Note that this data
may hot describe the exact state of the switching elements that we need; i.e.,
relays or other programmable connections defined in the switching path may
be in the wrong positions for our intended task. However, that causes no
problem becauseerging a path into a state changes nothing in the actual
hardware. Instead, the purpose of merging is simply to define the scope or
extent of the switching state.

118

Working With Actions
Creating Actions in C

Next we want to store the current status of the hardware—i.e., the positions
of the switching elements in the path of interest—before changing it. Storing
the hardware’s status in a switching state lets us store and recall it as a single
entity, instead of laboriously manipulating it via individual

Ut aPat hConnect () andUt aPat hDi sconnect () statements. We use

Ut aSt at eUpdat e() to update the state from the current settings of the
hardware:

Ut aSt at eUpdat e(hOrigi nal State);

Having safely stored the state of the switching hardware, we can use the
“NewPath” data to change it, like this:

Ut aPat hConnect (hPat h) ;

After doing tasks that require the new switching path, we can restore the
original path in a single statement withaSt at eRecal | ()

Ut aSt at eRecal | (hOriginal State);

Now that we have returned the hardware to its original state, we are finished
using the state object created at the beginning of the example. To free the
memory it is using, we do this:

Ut aSt at eRel ease(hOri gi nal St ate);

For more information about switching states, see “Data Types Associated
with Switching” in Chapter 1 of thReference book.

119

Working With Actions
Creating Actions in C

Adding Revision Control Information for Actions

If desired, each DLL inwhich action code resides can include a string of text
for auditing purposes, such asrevision control information. As shown below,
the text appears when listing the actions in atestplan.

Listing topic: ACTICHS
Testplan f£ile: C:'\Program Files'HP TestExec SLhbhin MyTestplan.tpa
Produced at: 372471997 12:03:56

Aotion name: Mybkcotion
Definition File Rewision Info...
Yersion: 1.1 Last Updated: 3/24,1997 11:53:50
Fevision Comments:
< No Comment >

DLL Rewision Info...
Fewision 1.1 of the Myiction DLL

The method for doing this is shown in the example of action code below.
You must add a macro named UTA_ DECLARE_DLL_REVISION_TEXT
and specify the auditing text init. Be sure to place the macro inside the scope
of the declaration for ext ern " C' when using a C++ compiler.

/1 File "MyAction. cpp”
#i ncl ude "stdafx. h"

#i ncl ude <uta. h>

#i ncl ude "MActi on. h"

extern "C" { // Prevent C++ conpiler from using nanme mangling

/1 Al actions in this DLL share the follow ng auditing information
UTA DECLARE DLL_REVI SI ON_TEXT (" Your auditing text goes here...");

voi d UTADLL MyActionRouti ne (HUTAPB hPar nBl ock)

{

...(code that inplenents the action routine)
return;

}

120

Working With Actions
Creating Actions in C

...(additional action routines inplenmented in this DLL)

} // end extern "C'

Note You can add one string of auditing text per DLL. That string of text appears
in thelisting for all actionsimplemented in the DLL. If you use multiple
source filesfor your DLL, be sure to specify the auditing text in only one of
them or you will generate an error.

Example of Creatinga C ActioninaNew DLL

Note Thetopicsin this section describe how to use the development environment
provided with Microsoft Visual C++. If you are using another C/C++
development environment, the details will vary but the concepts will be
similar.

This section, which assumes you are somewhat familiar with the mechanics
of using Visual C++, describes how to create anew actioninanew DLL.
The emphasisis on the process of creating an action in C, not on what
belongs inside an action.

Defining the Action

Follow the general procedure described earlier in “Defining an Action” and
keep the following in mind when using the Action Definition Editor to
define actions written in C:

« Choose “DLL Style” as the action style.

* The executable code for the action must reside in a DLL. Enter the name
of that DLL as the library name for the action.

* You can define execute, setup, or setup/cleanup routines for C actions.
» For the Routine name, use the name of the C routine.

« Be sure to use parameter types that are appropriate for the C language.

121

Working With Actions
Creating Actions in C

Specifying the Development Environment Options

You set the Visual C++ devel opment environment options once, and then
they become the defaults for any new projects that you create.

Specifying the Path for Libraries

1. Choose Tools | Optionsin the Visual C++ menu bar.

2. Inthe Options box, choose the Directories tab and specify a path for
library files that includes the “lib” directory beneath the home directory
in which HP TestExec SL is installed on your system. An example is
shown below.

E ditor | Tabs | Drebug I Compatibility | Build | Directories |{EE

Platfarm: Shiow directaries far:
[win32 r| [Librany files |
Directonies: L O

C:AProgram Fileg\Microzoft Yisual StudichCIgNLIE

C:hProgram FilesMicrozoft Yisual StudiohWCIgWFCHLIR
IE:"uF'n:ugram Files\HP TestExec SLAIH ... I

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

122

Working With Actions
Creating Actions in C

Specifying the Path for Include Files

1. Inthe Options box, specify a path for include files that includes the
“include” directory beneath the home directory in which HP TestExec SL
is installed on your system. An example is shown below.

Options n m

Editar I Tabs I Debug I Cormpatibility I Build | Directories | 't EE

Platform: Show directaries for:
[win32 | [inchude files |
Directories: L i 5

C:%Program Files\Microzoft Visual StudichWCIENMCLUDE
C:%Program Files\Microzoft Yisual StudiobWCA8NWMFCAMNCLIDE

C:%Program Files\Microzoft Visual StudichVCIEMNATLAMCLLIDE
IE:'&F‘ngram Filezs'"HP TestExec SLAinclude

2. Click the OK button to save the path you specified.

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

CreatingaNew DLL Project

1. Choose File | New in the Visual C++ menu bar.

123

Working With Actions
Creating Actions in C

2. Choose the Projects tab and specify Win32 Dynamic-Link Library asthe
type of project, as shown below.

Hew nm

Files = Projects | Workspaces | Qther Docurnents I

L& ATL COM Appwizard Project name:

¢| Chugter Rezource Type Wizard IM}@-C“D”

git| Custam Apphadizard)
=0 Database Praject Location:

2 DewStudio Addin Wwizard IC:'\F’rogram Filez'Microzoft Wisua J
G |54P Extension Wizard

b akefile:

'-fl, MFC Activel Controfwizard [Create new workspace

) Add to cunent workspace

[Dependency of:
i'§ Utility Project

#|'Win32 Application I LI
wind2 Conzole Application
Ewin32 Dynamic-Link Library

% Win32 Static Librany 35””;2
"

3. Type aNamefor your project.

4. Specify the Location for your project.

Note The action definition created with HP TestExec SL's Action Definition
Editor needs to reference this location. If you later recompile the DLL in
release mode and move it elsewhere, you need to specify its new location as
described in “Specifying the Search Path for Libraries” in Chapter 5.

5. Choose the OK button.

124

Working With Actions
Creating Actions in C

6. Chooseto create an empty DLL project, as shown below.

Win32 Dynamic-Link Library - Step 1 of 1

Wwhat kind of DLL would vou like to create 7

% i empty DLL project
0 & simple DLL project.
0 & DLL that esports some symbals,

7. Choose the Finish button.

8. Verify the information for the new project, as shown below.

Mew Project Information E

Win3d2 Dynamic-Link, Library will create a new sheleton project with the following
gpecifications:

An emphy DLL project will be created for you.

Mo files will be created or added to the project.
9. Choose the OK button.

Specifying the Project Settings

You specify the project settings once for each new project you create.
1. Choose Project | Settings in the Visual C++ menu bar.

2. If needed, choose the General tab to make its options visible.

125

Working With Actions
Creating Actions in C

3. Inthe Project Settings box, specify the Microsoft Foundation Classes
(MFC) option.

Specify this... If yvou wish to do this...
Not Using MFC Create a DLL that is small and fast but

does not support MFC's features.? This
option is most useful for reducing
overhead when you have many individual
action routines in many DLLs.

Use MFC in a Static Use MFC's features but have a large DLL.

Library? Because the size of your action code
typically will be far smaller than the DLL's
overhead, this option is most useful when
you have only a few DLLs and each of
them contains multiple, related action
routines.

a. Generally speaking, MFC’s most useful feature insofar as actions are
concerned is that it lets you use visual resources, such as dialog boxes, in
actions. In many cases these graphical features are not needed to
manipulate data or control instruments, and you do not need to use MFC.

b. You should not use the MFC in a Shared DIl option because HP TestExec
SL already does this, and having different versions of MFC may cause
conflicts.

An example of specifying “Use MFC in a Static Library” for the
Microsoft Foundation Classes option is shown below.

Project Settings E n

Settings For. ['win32 Debug LI General | Debug | CAC++ | Link: | Hesourct EE

R Mudction
- : Beset |

Microzoft Foundation Clazses:

4. Choose the C/C++ tab to make its options visible.

5. Choose Precompiled Headers from the Category list.

126

Working With Actions
Creating Actions in C

6. Be sure “Automatic use of precompiled headers” is enabled.
7. Specify “stdafx.h” for the “Through header” option.

When you specify precompiled headers, the compiler will compile once
all the header files through the one specified in the dialog box, and after
that it will compile only your code. This speeds subsequent compilations.
An example of using these options is shown below.

Project Settings E
Lirk | Hesnurca EE
Feset |

Settings For: [win32 Debug ;I General I Debug | C/C++
B Muyécion

(L0 o rpiled Headers

€ Mot uging precompiled headers
% Automatic use of precompiled headers

Through header: Istdaf:-c.h

8. Choose the Link tab to make its options visible.

9. Specify “utacore.lib” for the “Object/Library modules” option, as shown
below.

Project Settings n B

LI General I Debug | C/C++ | Link | Hesourc{ EE

Categony: IGeneraI j Reset |

Output file name:
|DebugMusction. di

ObjectAibran modules:

|utacnre.|ib

Linking against “utacore.lib” lets the compiler resolve all the external
references to HP TestCore definitions, functions, and classes used in your
action code. Because you already specified the default library path
earlier, you do not need to enter the full path here.

10.Choose the OK button to save the project settings and close the Project
Settings box.

127

Working With Actions
Creating Actions in C

Writing Source Filesfor the Action Code

There are a couple of waysto write action code. You may prefer to write the
code from scratch, or you can copy the code for an existing action and use it
as atemplate for a new action. Shown below are the contents of the sasmple
files needed to create asimple action from scratch. Put the filesin the project
directory for your DLL.

Contents of the Header File;

/1 This file is MyAction.h
extern "C' void UTAAPI MyExecut eFuncti on(HUTAPB hPar amnet er Bl ock) ;

Contents of the Implementation File:

/1 This file is MyAction. cpp

#i ncl ude "stdafx. h"

#i nclude <uta.h> // APl for HP TestCore services
#i ncl ude "MyActi on. h"

CW nApp theApp; // Conment out or renove this line if not using MFC
extern "C'{ // Prevent C++ conpiler fromusing nane nangling
voi d UTADLL MyExecut eFuncti on(HUTAPB hPar anet er Bl ock)

{
/1 Action code to do a task goes here...
return;

}
}

Contents of the System-Level Include File:

/'l This file is stdafx.h

#defi ne VC_ EXTRALEAN // Exclude rarely used stuff

#i ncl ude <afxwin.h> // M-C core and standard conponents
#i ncl ude <afxext.h> // M-C extensions

Although this code is used to create aDLL that contains a single execute
action, you could write multiple actions of various types and put them al in
asingle DLL. Also, your actionstypically will use parameters passed in a
parameter block.

128

Working With Actions
Creating Actions in C

Adding Source Filesto the Project

Do the following for each of the source files above:

1. ChooseFile | New in the Visual C++ menu bar.

2. On the Files tab in the New box, specify the file’s type, Nawared
location, and choose the OK button to add it to your project.

An example of creating a header file is shown below.

New nn

Files | Projects I Wiorkspaces I Other Documents |
] fctive Server Page M| &dd to project:
21 Binary File -
=] b whsction ;I
45| Bitmap File I
:C/C++ Header File
[% C++ Source File Filz narne:
E% Curzar File IMyAclion.h
[8] HTML Page
- Ylcon File Location:
I taci File IC:\F’rogram FilesiMicrozoft YWisua J

3. Type the file's contents in the editor window that appears.

1. Use a “.cpp” extension for your implementation file.

129

Working With Actions
Creating Actions in C
Verifying the Project’s Contents

e Choose the FileView pane in the Visual C++ workspace window to verify
the contents of your project, as shown below.

2l]

Wu:urkspau:e ‘Mudction’ 1 project(s] | -
El 2l MyAction files
EI a Source Files

R [#] Mydction.cpp
EI a Header Files

|
= Elass"v"i...l File"»-"iewl B Infu:u"-u-"iewl

Choosing Which Configuration to Build

1. Choose Build | Set Active Configuration... in the Visual C++ menu bar.

2. Specify that you wish to build a debug version of the project, as shown

below.
Set Active Project Configuration ﬂm
Project configurations: oK
& chian - 'w'ir132 Releaze

e schion - "Winae Deb Cancel

Note The debug version of a program contains additional code that makes it larger
and slower to execute than a release version. Thus, you probably will want
to build a final, release version of the DLL after you have debugged it.

3. Choose the OK button.

Building the Project

» Choose Build | Build project name> in the Visual C++ menu bar to
build the DLL.

130

Working With Actions
Creating Actions in C

Copyingthe DLL to Its Destination Directory

Overview

Each time you create aDLL containing action routines, you need to copy the
DLL to the destination directory where it will be used. You can greatly
simplify and reduce potential errors in the copying process by creating one
or more custom toolsin Visual C++.

Note Any time you moveaDLL, you potentially need to need to specify its new
location as described in “Specifying the Search Path for Libraries” in
Chapter 5. Also, if you are running a testplan, you need to close and reopen
it before new or moved files will take effect.

Creating a Custom Tool to Copy the DLL

1. Choose Tools | Customize in Visual C++'s menu bar.
2. In the Customize box, choose the Tools tab.
3. Choose the New icon that appears above the “Menu contents” list.

4. In the blank field that just appeared in the “Menu contents” list, specify a
descriptive label for what this tool does.

5. Typexcopy as the Command.

6. Click the arrow to the right of the Arguments field.

7. Choose Target Path from the list that appears.

8. Enter quotes around tB¢ Tar get Pat h) entry in the Arguments field.

9. To the right of $(Tar get Pat h) " in the list of Arguments, type the
name of the destination directory to which your DLL should be copied.

Tip: If your pathname includes spaces, be sure to enclose it in quotes.

10.Enable the check box labeled Use Output Window.

131

Working With Actions
Creating Actions in C

11. Choose the Close button.

Shown below is an example of specifying the options for this custom tool.

Conze @R

Cormmands | Toolbarz | Tools | Kevboard | Add-inz and Macro Files |

|Menu contents: U T ¥
: Copy DLL toHP Te

Shpy++

MFC &Tracer

R efagister Contral LI
Commard: I:-:c:u:up_l.J.EXE J
Arguments: I"$[T argetPath]" "'C:AProgram FileshHP TestExec SLAbin" j

Iritial directon: I j

¥ Use Outputwindow [Prompt for arguments [Close window on exiling

Cloze

Using the Custom Tool to Copy the DLL

1. Choose Tools in Visual C++’s Tools menu bar.
2. Choose the custom tool from the menu of tools.

When the tool runs, its results appear in Visual C++'s output window.

132

Working With Actions
Creating Actions in C

Example of Defining a C Action

Theillustration below shows how information you specify in the Action
Definition Editor relates to the associated code in a C action routine.

Action Marme; IDemuﬂ.ctind Foutines

Autbu:nr:lHF') Setup/Cleanup 0 Execute

Library Name: [Myaction. di Setup: |

Execute: I.ﬂ.l:ldT walntegersE secute

/1l File "MyAction.cpp" (Source for MyAction.dll)

#i ncl ude "stdaf x. h"
#i ncl ude <ut a. h>
#i ncl ude "M/Action. h"

extern "C' {

voi d UTADLL AddTwol nt eger sExecut e (HUTAPB hPar nBl ock)
{
| Ut al nt 32 Addendl (hParnBl ock, "Addendl");
| Ut al nt 32 Addend2 (hPar nBl ock, "Addend2");
| Utalnt32 Sum (hParnBl ock, "Sumt');
Sum = Addendl + Addend?;
return;

}

ra&ction Parameters

The current result iz IS L ;I /

M ame Walue |Data Tope Pescription
.ﬁ.ddend'l ﬁ—ﬁtega'ﬁi"b‘r]" Firgt number to be added

¥ [[iz3jaddend2
—>| = =i

=

|nteger [32 bit] | Second number to be added

_

Integer [32 bit] |Sum of bwo numbers

133

Working With Actions
Creating Actions in C

Adding a C Action to an Existing DL L

Follow this general procedure to add anew C action to an existing DLL:

1

extern "C" { //

Use HP TestExec SL's Action Definition Editor to create a definition for
the new action. When you specify the library, use the name of the
existing “.dll” file to which you want to add the new action.

. If the existing DLL was created using a different compiler or different

compiler options, verify that your C/C++ development environment's
options are similar to those described earlier in “Specifying the C/C++
Development Environment Options.”

. Use your development environment to open the project workspace or

make (“.mak”) file—i.e., whichever method your C/C++ development
environment uses to manage projects—for the existing DLL.

. Add the code for the new action to the implementation (“.cpp”) file.

The example below shows the code for an implementation file used to
create a DLL that contains two action routines. Notice that the
declaration foext ern " C' encompasses both functions, and that the
implementation file uses the UTADLL macro in the functions.

/1 File is "MAction.cpp”
#i ncl ude "stdafx. h"

#i ncl ude <uta. h>

#i ncl ude "M/Acti on. h"

Prevent C++ name mangling

/1 Function that adds two integers
voi d UTADLL AddTwol nt eger sExecut e (HUTAPB hPar nBl ock)

| Ut al nt 32 Addendl (hPar Bl ock, "Addendl");
| Ut al nt 32 Addend2 (hPar Bl ock, "Addend2");
| Utalnt32 Sum (hParnBl ock, "Suni);

Sum = Addendl + Addend2;

134

Working With Actions
Creating Actions in C

/1l Function that adds two reals
voi d UTADLL AddTwoReal sExecut e (HUTAPB hPar nBl ock)

{

| Ut aReal 64 Addendl (hParnBl ock, "Addendl");
| Ut aReal 64 Addend2 (hParnBl ock, "Addend2");
| Ut aReal 64 Sum (hPar Bl ock, "Suni');

Sum = Addendl + Addend2;

return;

}

} // end extern "C'

5. Add the declaration for the new action to the header (“.h") file.

The example below shows the code for a header file that contains the
prototypes for two action routines. Notice that each prototype includes a
declaration foext ern " C', and that the header file uses the UTAAPI
macro in the prototypes.

/IFile is "MyAction.h"

extern

extern

ordi nal hint
1 0
2 1
3 2
4 3

Note

"C' void UTAAPI AddTwol nt eger sExecut e(HUTAPB hPar nBl ock) ;
"C' void UTAAPI AddTwoReal sExecut e(HUTAPB hPar nBl ock) ;

6. Rebuild the DLL.

Tip: You can use the “dumpbin” utility provided with Visual C++ to
browse the contents of an existing DLL. The example below shows an
excerpt from a “dumpbin /exports” listing that shows the exported names
of the functions in a DLL.

name

_Di spl ayExceptions@ (00001680)
_Echol nt32@ (00001040)
_EchoReal 64@ (000010A0)
_Randonfai | Real 64@ (000012B0)

Any time you move a DLL, you potentially need to specify its new location
as described in “Specifying the Search Path for Libraries” in Chapter 5.
Also, if you are running a testplan, you need to close and reopen it before
new or moved files will take effect.

135

Working With Actions
Creating Actions in C

Debugging C Actions

You can debug C actions with the debugging tools provided by the C/C++
environment in which you program. The general sequence of events when
using your C/C++ environment for debugging is:

In C/C++ Environment

1. Set one or more breakpoints in
action code being debugged.

2. Specify HP TestExec SL as
program to execute during a
debug session.

3. Run the debugger.

4. Debugger runs HP TestExec SL In HP TestExec SL

I P | 5. Log in.
Control passes to HP TestExec SL

6. Load & run a testplan that
uses the action code to be

debugged.
Control passes to C/C++ L)
7. Paused at breakpoint in action
+ code.
8. Examine or modify variables in
action code being debugged
9. Continue or clear breakpoint,
etc.
Note Debugging may require that you build anew DLL specifically for debug
purposes.
Note Any time you moveaDLL, you potentially need to specify its new location

as described in “Specifying the Search Path for Libraries” in Chapter 5.
Also, if you are running a testplan, you need to close and reopen it before
new or moved files will take effect.

136

Working With Actions
Creating Actions in C

Note If your debug process causes you to modify and recompile aDLL that
contains action code, you cannot simply copy the modified DLL over the
existing DLL while HP TestExec SL has atestplan loaded that uses that
DLL. Instead, you must close the testplan, copy the modified DLL over the
existing DLL, and then reload the testplan.

Follow this general procedure to debug a C action:
1. Runyour C/C++ development environment.

2. Specify ‘<HP TestExec 9. home>\bin\tstexcsl.exe” as the program to
support debug.

An example of doing this in Visual C++ is shown below.

Project Settings

Win32 Debug ;I Debug | CiC++ | Link | Resources I OLE

Sethings For:

Cateqary: IGeneral ;I

Executable for debug session:
IE:'\F'rograrn Files\HP TestErec SLAbintstercsl exe

3. Set the desired breakpoints in the implementation file (“.cpp”) for the
action.

An example of doing this in Visual C++ is shown below.

Thi=z file i= MvAction cpop by
finclude "stdafzx k" |hmeHemnveBmakpmnHFm|
#include <uta.h> - API for HF TestCore services

#include "Myhction. h”

CWinApp thelpp:
extern "C"{
woid UTADLL MyEmxecuteFunction{HUTAPE hParameterBloclk)

®|
AfxMessageBox("Thiz message called from the action DLL", HE_OK):

return:

¥

4. Choose whichever button or command runs your debugger.

137

Working With Actions
Creating Actions in C

In Visual C++, choose Build | Start Debug | Go in the menu bar.

5. After HP TestExec SL has loaded, load or create a testplan that invokes
the action being debugged.

6. Run thetestplan.

7. When the breakpoint in your action code is reached and control is
returned to the debugger, use the debugger’s features to debug the action.

Another useful debugging technique is to create action code that pops up a
message box or dialog box and stops test execution so you can use external
instruments to diagnose problems.

138

Working With Actions
Creating Actions in HP VEE

Creating Actionsin HP VEE

HP TestExec SL lets you write actions in HP VEE and take advantage of
HP VEE's features, such as debugging and instrument control. Executable
HP VEE actions are HP VEE user functions stored in an HP VEE library.

Creating an action in HP VEE is a two-step process. You can do the
following steps in any order:

» Use HP VEE to create the functions used by the action, and save the
resulting user functions in the HP VEE library.

* Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

See also: “HP VEE Considerations” in Chapter 2 of i@etting Sarted
book.

Restrictions on Parameter Usagein HP VEE

HP VEE only lets you pass certain types of parameters. Shown below is a
list of those types and how they correspond to one another in both
environments.

In HP TestExec SL In HP VEE
Data Type: Data Type: Shape:
Int32 Int32 Scalar
INnt32Array Int32 Array
Real64 Real Scalar
Real64Array Real Array
String Text Scalar
StringArray Text Array

139

Working With Actions
Creating Actions in HP VEE

Note As shown below, you must explicitly specify a datatype for pinsin
UserFunctions; i.e., do not use the Any type.

Input Terminal Information

Mame: Inputi Required Type:
Maode: Required Shape:

PComplex
Container Information | complex

Wavetarm

Mo data on input pin Spectrum

| oK ||Cance|| Coord
Text

ord

Ay) €

_— Do not
use this
option

Defining an HP VEE Action

Be aware of the following when using the Action Definition Editor to create
HP VEE action definitions:

* You must choose “HP VEE” as the action style.

* When defining the action library name, enter the name of the HP VEE
library—e.g., “mylib.vee”—that contains the user function that does the
action.

* For the Routine name, enter the name of the HP VEE function; i.e., the
user function in the specified HP VEE library.

Example of an HP VEE Action

This section provides a simple example of how parameters are passed
between HP TestExec SL and action code created using HP VEE. The action
is done by an HP VEE user function that receives two parameters from

HP TestExec SL, generates a random number based on those parameters,
and then passes the result back to HP TestExec SL.

140

Working With Actions
Creating Actions in HP VEE

All that is required to pass parameters between HP TestExec SL and
HP VEE isto:

» Make the names of parameters in the HP VEE user function match the
names of corresponding parameters specified for the action in the Action
Definition Editor.

+ Make the name of the HP VEE function match the name of the action
code specified in the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“random.umd” located in an action library where you chose to store HP VEE
action definitions.

Action name random

Description Generates a random number.

Library name c:\project\vee\mylib.vee

Routine name my_random

Parameters (All parameters are of type Real.)
low The low range value for the random number generator.
high The high range value for the random number generator.
result The resulting value from the HP VEE random number

generator (designated as an OUTPUT in the Action
Definition Editor).

141

Working With Actions
Creating Actions in HP VEE

The corresponding HP VEE user object used to create the user function for
this definition might look like this:

| Yy random [<] _1f
1 o = random{low high) | 4]
Ll |
P | frandomlow, high) Result —— result

j—u high
1 high =

Debugging HP VEE Actions

In a production environment, you probably want HP TestExec SL to

schedule HP VEE in run-only mode. However, this means that none of

HP VEE's command menus are present, which prevents you from setting
breakpoints, editing files, starting or stopping programs, or controlling
HP VEE in any way.

The Action Definition Editor provides an option that helps you debug

HP VEE actions. If you click to select the Debug check box in the Action
Definition window, HP VEE will be run in debug mode. After you have
debugged your actions, unselect the box to return to run-only mode.

Tip: While debugging HP VEE actions, you can edit UserFunctions by
running another copy of HP VEE and making edits there. After editing a
UserFunction, be sure to save the changes to disk with File | Save in

HP VEE. Then close and reopen the current testplan in HP TestExec SL to
load the changes.

Error Handlingin HP VEE

If you select the Debug check box in the Action Definition Editor’s Action
Definition window, errors in HP VEE will not cause exceptions. Instead, the
normal HP VEE processing will handle the error. An error message dialog
box will appear, giving the complete text of the error message and
highlighting in red the HP VEE object containing the error.

142

Working With Actions
Creating Actions in HP VEE

Controlling the Geometry of HP VEE Windows

If desired, you can specify the geometry for the window in which HP VEE
actions appear. Use atext editor, such as WordPad in its text mode, to add
two lines in the following format to the “tstexcsl.ini” file in HP TestExec
SL's home directory (which by default is “\Program Files\HP TestExec

sL).L

[VEE Acti ons]
Ceonet r y=W dt hxHei ght +XOf f set +YOf f set

All dimensions are measured in pixels.

The example below specifies a window that is 800 pixels wide, 500 pixels
high, and originates in the upper-left corner of the screen.

[VEE Acti ons]
Ceonet r y=800x500+0+0

Executing HP VEE Actions on a Remote System

If desired, you can execute HP VEE actions on a host system other than the
one on which you are running HP TestExec SL. Use a text editor, such as
WordPad in its text mode, to add two lines in the following format to the
“tstexcsl.ini” file in HP TestExec SL's home directory (which by default is

“\Program Files\HP TestExec SLE).

[VEE Acti ons]
Host Nane=Renpt eAct i onHost

whereRemoteActionHost is the domain name or IP address of a remote
system where HP VEE is installed. For example,

[VEE Acti ons]
Host Name=hpl vl f1 .1 vd. hp. com

or

[VEE Acti ons]
Host Name=15. 11. 89. 216

1. If the[VEE Actions] section aready exists, simply add the missing lineto it.
2. If the [VEE Actions] section already exists, simply add the missing lineto it.

143

Working With Actions
Creating Actions in HP VEE

Note An action executing on a remote system appears in awindow on the remote
system.

144

Working With Actions
Creating Actions in National Instruments LabVIEW

Creating Actionsin National I nstruments
LabVIEW

HP TestExec SL lets you write actions in National Instruments LabVIEW

and take advantage of National Instruments LabVIEW'’s features, such as
debugging and instrument control. Executable code for National Instruments
LabVIEW actions is National Instruments LabVIEW virtual instruments
(VIs) stored in a National Instruments LabVIEW library (“.1Ib") file.

Creating an action in National Instruments LabVIEW is a two-step process.
You can do the following steps in any order:

« Use National Instruments LabVIEW to create the VIs used by the action,
and save the resulting routines in the library.

* Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

145

Working With Actions
Creating Actions in National Instruments LabVIEW

Related Files

HP TestExec SL includes the following National Instruments
LabVIEW-related files:

uta.llb Contains predefined VIs for passing parameters to and from
HP TestExec SL. Located in directory “\<HP TestExec SL
homex\libs”.

We suggest that you place this library in a subdirectory
called “uta.lib” in the National Instruments LabVIEW
installation directory. If you do not want to create a
subdirectory of that name, install the library in another
subdirectory of the National Instruments LabVIEW
installation directory and make sure the directory has a “.lib”
extension.

utaactn.llb Contains a VI used to ask National Instruments LabVIEW to
execute specific Vls for HP TestExec SL. Note that the front
panel of this VI occupies a small amount of space on your
monitor’s screen. Located in directory “\<HP TestExec SL
home>\bin”.

Restrictions on Parameter Passing

Be aware of the following restrictions when passing parameters between
HP TestExec SL and National Instruments LabVIEW:

« You can only pass certain types of parameters. Shown below is a list of

those types and how they correspond to one another in both
environments.

In HP TestExec SL In National Instruments LabVIEW

Data Type: Data Type:

Int32 Signed 32-bit integer

Int32Array Array of signed 32-bit integers
Real64 Eight-byte double precision number

146

Working With Actions
Creating Actions in National Instruments LabVIEW

Real64Array Array of eight-byte double precision numbers
String C string
StringArray Array of C strings

* You must use a VI to pass parameters between the two environments.

Custom VIs provided by Hewlett-Packard let you make a graphical
connection between parameters in HP TestExec SL and standard Vs
used with National Instruments LabVIEW. Parameters are passed in a
named block or group.

To access an HP TestExec SL parameter, place one of the VIs from
library “uta.llb” in the diagram of the action’s VI. If the library was
installed correctly, you can select VIs in it by choosing Functions | UTA
in National Instruments LabVIEW.

List of Custom VIsProvided with HP TestExec SL

The functionality of VIs that pass parameters is viewed from the perspective
of the National Instruments LabVIEW environment. Thus, the names of Vls
that send a value to HP TestExec SL contain the word “set” and the names of
Vls that retrieve a value from HP TestExec SL contain the word “get.”

The custom Vls provided with HP TestExec SL that support the passing of
parameters are:

UtaPbGetInt32.vi Obtains the value of Int32 parameters.

UtaPbSetInt32.vi Updates Int32 parameters with new values.

UtaPbGetInt32Array.vi Obtains the value of Int32Array parameters.

UtaPbSetInt32Array.vi Updates Int32Array parameters with new
values.

UtaPbGetReal64.vi Obtains the value of Real64 parameters.

UtaPbSetReal64.vi Updates Real64 parameters with new values.

UtaPbGetReal64Array.vi Obtains the value of Real64Array
parameters.

147

Working With Actions
Creating Actions in National Instruments LabVIEW

UtaPbSetReal64Array.vi Updates Real64Array parameters with new

values.
UtaPbGetString.vi Obtains the value of String parameters.
UtaPbSetString.vi Updates String parameters with new values.

UtaPbGetStringArray.vi Obtains the value of StringArray parameters.

UtaPbSetStringArray.vi Updates StringArray parameters with new
values.

An additional VI isprovided that lets you use National Instruments
LabVIEW to control a switching path:

UtaPathConnectNodes.vi Connects nodes in a switching path. Useful if
you need to modify a switching path within
an action.

Aswith other VIs used with National Instruments LabVIEW, these custom
Vs have front panels and onscreen help you can browse to learn more about
them. An example of help for Ut aPbGet | nt 32. vi shown below.

=-I| Help |;l|

parameter block [defaulted] —7-T3
parameter name - 'PE

ernor in [no error] =

parameter value
error out

UtaPbGetint32. vi

Given a parameter name, this % returns the 32 bit integer value. The
| parameter block handle iz defaulted and iz not required. The “ermrar in®
defaults to "'no ermor'' and i nat required.

Defining a National InstrumentsLabVIEW Action

Be aware of the following when using the Action Definition Editor to define
National Instruments LabVIEW actions:

* You must choose “LabVIEW” as the action style.

148

Working With Actions
Creating Actions in National Instruments LabVIEW

< For the Library name, enter the name of the National Instruments
LabVIEW VI library, including its “.Ilb” extension.

* For the Routine name, enter the National Instruments LabVIEW VI
name, including its.Vi” extension; i.e., the action V1 in the specified
library.

Example of a National InstrumentsLabVIEW Action

Shown below is asimple example of a VI created using National
Instruments LabVIEW with two of the custom Vs provided with
HP TestExec SL.

IInEutN umI Cutputturn
S| e 1 [P
'*—D% MDEL
The example shows how custom Vs are used to pass parameters between
HP TestExec SL and National Instruments LabVIEW. Here, the custom VI
named Ut aPbGet Real 64 gets a parameter from the HP TestExec SL
environment. The output from Ut aPbGet Real 64 is connected to the
input of the standard National Instruments LabVIEW VI used to take the

sguareroot of anumber. The resulting square root is connected to the custom
Ut aPbSet Real 64 VI, which passes the result back to HP TestExec SL.

Shown below is the information you would use the Action Definition Editor
to specify for this example. Notice how the names of parametersin the
action definition match the names of the parameters of each library VI.

Action name Ivsgrt

Description Takes the square root of a number.

Library name c:\labview\cmlib.lib

Routine name sqrt.vi

149

Working With Actions
Creating Actions in National Instruments LabVIEW

Parameters (All parameters are of type Real64.)

InputNum The number to be passed to National Instruments
LabVIEW whose square root is to be taken.

OutputNum A parameter to hold the square root of the input number
(designated as an OUTPUT in the Action Definition
Editor).

The action definition is stored in a file called “Ivsgrt.umd” located in a
standard library for National Instruments LabVIEW action definitions.

Setting I nterface Optionsfor National Instruments
LabVIEW

When HP TestExec SL executes a National Instruments LabVIEW action,
the front panel of the VI associated with the action is displayed while the VI
executes. This lets a test operator use the panel.

You can control the size and location of this panel. When HP TestExec SL
executes the action, the panel window appears at the location and size you
set when developing the action. If the action does not require any interaction
with the test operator, you can make the panel size very small and place the
panel in an inconspicuous part of the screen. This prevents the operator from
being distracted by the panel.

You can also control which menus and toolbars display with the panel
window, how the panel window looks, and numerous other options. Set
these options by choosing the “Window Options” mode of the “VI Setup”
dialog box in National Instruments LabVIEW.

150

Working With Actions
Creating Actions in HP BASIC for Windows

Creating Actionsin HP BASIC for Windows

HP TestExec SL lets you write actionsin HP BASIC for Windows and take
advantage of your familiarity with that instrument control language.
Executable HP BASIC for Windows actions are SUB programs you write
and add to a program that runs HP BASIC for Windows as a server for

HP TestExec SL. Besides containing SUB programs that implement actions,
the server program loads the graphical 1/0 environment (HP BASIC Plus),

does any desired autostart configuration tasks, and runsthe |PC Widget? that
lets HP BASIC for Windows and HP TestExec SL communicate.

Creating an action in HP BASIC for Windows is a multi-step process. You
can do the following stepsin any order.

» Use HP BASIC for Windows to append one or more SUB programs
containing your action code to a copy of the server template in file

“server.prg”. This creates your HP BASIC for Windows server program.

* Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

» Use the HP BASIC for Windows “rmb_conf.exe” utility to “register”
your server program and define its communications characteristics.

Note

When HP TestExec SL calls an action written in HP BASIC for Windows, it
automatically loads and runs HP BASIC for Windows.

1. In HP BASIC for Windows, a “widget” is an entity created on the screen
with an ASSIGN statement from an executing HP BASIC Plus program.

151

Working With Actions
Creating Actions in HP BASIC for Windows

Related Files

HP TestExec SL includes the following HP BASIC for Windows-related
files:

rmb_conf.exe A utility used to define the characteristics of your
HP BASIC for Windows server program.

server.prg An HP BASIC for Windows program file for use as a
template when creating your HP BASIC for Windows
server program.

wiipc.dll The IPC Widget used by the HP BASIC for Windows
server program.

wiipc.hlp A help file for the IPC Widget.

widgcom.dll A helper DLL for the IPC Widget.

widgcom.csb An HP BASIC for Windows CSUB used by the
HP BASIC for Windows server program.

HP TestExec SL installs these files in the home directory in which
HP BASIC for Windowsis installed.

Restrictions on Parameter Usagein HP BASIC for
Windows

HP BASIC for Windows only lets you pass certain types of parameters.
Shown below isalist of those types and how they correspond to one another
in both environments.

In HP TestExec SL In HP BASIC for Windows
Data Type: Data Type:
Int32 INTEGER (16-bit)
INt32Array INTEGER Array
Real64 REAL
Real64Array REAL Array

152

Working With Actions
Creating Actions in HP BASIC for Windows

Complex COMPLEX
String String
StringArray String Array
Note Integers are 32-bit in HP TestExec SL and 16-bit in HP BASIC for

Windows. If you pass Int32 or Int32Array datato an HP BASIC for
Windows action, be sure to restrict the value to a 16-bit range; i.e., -32768
through +32767. If you need values outside this range, use Real 64 types
instead of Int32.

Defining an HP BASI C for Windows Action

Be aware of the following when using the Action Definition Editor to create
HP BASIC for Windows action definitions:

« You must choose “HP RMB” as the action style.
e Leave the Library Name field blank.

* For the Routine name, enter the name of the HP BASIC for Windows
subprogram; i.e., the name of a SUB in the HP BASIC for Windows
server program.

Creating an HP BASIC for Windows Server Program

Action code you write in HP BASIC for Windows resides in a server
program that you create from a template provided by Hewlett-Packard. Do
the following to create the server program:

1. Start HP BASIC for Windows if it is not already running.

2. Copy the server template (“server.prg”) to a new name, which will be the
name of the server program that contains the action code you write. For
example,

copy "server.prg" to "MServer. prg"

153

Working With Actions
Creating Actions in HP BASIC for Windows

3. Onthe HP BASIC for Windows command line, load the renamed server
template. For example,

| oad "MyServer. prg"

4. Type “edit” on the command line and press Enter to begin editing your
server program.

5. Add code that implements one or more actions. Begin adding your new
code on a new line beyond the end of the existing program.

Action code follows the general form shown below (line numbers have
been omitted).

...(existing code in server tenplate)
SUB <nhame of action routine>
COM / <name of action routine>/ <data type> <parameter name>

...(code that does a task suitable for an action)
SUBEND

Notice that the name of the action routine must be the same in the SUB
and COM statements. Each action routine must have a unique name and
its code must reside within its own matching pair of SUB and SUBEND
statements. If you need to pass more than one data type in parameters to
your action specified in a COM statement, use spaces between each data
type and its first parameter, and commas as delimiters elsewhere, like
this:

<data type 1> <parm>, <parm>, <data type 2> <parm>, <parm>
Keep the following in mind when writing actions:
» Place all the actions for any given testplan in a single server program.

* Do not use the STOP statement. It will cause the server to disconnect
from HP TestExec SL.

e Use ON ERROR and ON TIMEOUT trapping where appropriate to
avoid a paused—i.e., “hung’—call to an action.

154

Working With Actions
Creating Actions in HP BASIC for Windows

« We recommend that you do not use ON...RECOVER unless you have
a thorough understanding of program flow when using a server.

« Remember that HP TestExec SL waits for your SUB to complete and
return. Thus, if you use PAUSE or DIALOG statements, the user must
interact with HP BASIC for Windows instead of with HP TestExec
SL to restore testplan flow. But if HP BASIC for Windows is
iconified, the user will be unaware that interaction is required. Either
be sure users know when interaction is required or add GESCAPE
CRT,32 at the beginning of interactive SUBS to keep them from being
iconified.

6. Save the edited server template. For example,
re-store "MyServer. prg"

7. Run the server configuration utility (“rmb_conf.exe”), specify the name
of your modified server template in its Server Program field, and choose
the OK button to save the change and exit.

Note Do not use spaces in pathnames in the configuration utility. Instead, use
short pathnames as they appear in a DOS shell window. For example, instead
of typing “c:\Program Files\HPBASIC” you must type
“c:\Progra~1\HPBASIC".

Note Unless you have all of your HP BASIC for Windows actions in a single
server program, you must rerun the server configuration utility and specify
the name of the appropriate server program each time you change testplans.
If you change testplans often, you may want to add the server configuration
utility to the Tools menu, as described under “Adding Custom Tools to HP
TestExec SL” in Chapter 6.

Note Actions execute the fastest when HP BASIC for Windows is iconified. You
can use the Start As option in the “rmb_conf.exe” utility to specify whether
your server program starts as an icon or a window.

155

Working With Actions
Creating Actions in HP BASIC for Windows

Example of an HP BASIC for Windows Action

This section provides a simple example of how parameters are passed

between HP TestExec SL and action code created using HP BASIC for

Windows. The action is done by an HP BASIC for Windows SUB program

that receives one parameter—a radius—from HP TestExec SL, generates the
diameter and area of a circle based on that parameter, and then passes the
results back to HP TestExec SL via two other parameters.

All that is required to pass parameters between HP TestExec SL and
HP BASIC for Windows is to do the following in your server program:

» Make the name of the HP BASIC for Windows SUB program match the
name of the action routine specified in the Action Definition Editor.

* Create a labeled COM block with a name that matches the SUB name.

« List the parameters in the COM block in the same order as they appear in
the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“circle.umd” located with your HP BASIC for Windows actions.

Action name Circle

Description Calculates the diameter and area of a circle from its
radius.

Library name (none)

Routine name Circle_math

Parameters (All parameters are of type REAL.)
Radius The specified radius of the circle.
Diameter The calculated diameter of the circle (designated as an
Output).
Area The calculated area of the circle (designated as an

OUTPUT in the Action Definition Editor).

156

Working With Actions
Creating Actions in HP BASIC for Windows

The corresponding HP BASIC for Windows SUB used to implement the
action might look like this (line numbers have been omitted):

...(existing code in server program

SUB Circle_math

COM /Circle_math/ REAL Radi us, Di aneter, Area
|

Di armet er =2* Radi us

Ar ea=PI *(Radi us”2)

SUBEND

And the corresponding configuration for the server program might look like
this:

Callable HPBW Configuration [_ (O] x|

Server Program: IE:'\F‘ngra”‘I SYHPBASIC M yServer PRG

HPEW Ditectary: |= \Progra™T\HPBASIC

windaw Title: |HP BASIC for Windows

Hostnarne: IL':":E'I Start Az [Teon 'W'indu:uwl
Geametny: IEDHEEI Redraw Buffering: Off On |

Fort: I Text Buffer Lines: I82
Colar Map: |Share ReadOnly | Private | Colors: I1E

HFE' \Workspace: I-I M

IPC Shared Space: I-I M IPC Client Timeout: ID
Cancel | Defaults |

Debugging HP BASIC for Windows Actions

You can use standard features of the interactive HP BASIC for Windows
environment when debugging actions. For example, you can pause,
single-step, interrogate or modify the values of variables, list program
segments, and use various debugging features provided by HP BASIC for

157

Working With Actions
Creating Actions in HP BASIC for Windows

Windows. Also, keep the following in mind when debugging HP BASIC for
Windows actions:

Although the performance of actions created in HP BASIC for Windows
actions is best when HP BASIC for Windows is iconified, interactive
debugging requires a normal—i.e., non-iconified—window. The Start As
option in the “rmb_conf.exe” utility lets you specify whether your

HP BASIC for Windows server program starts as a window or an icon.
Once started, you can use standard mouse interaction in Windows to
maximize, minimize, or move the window.

While interacting with HP BASIC for Windows, do not STOP or RESET
the program because a stopped server disconnects from its HP TestExec
SL client. You can use PAUSE, STEP, and CONTINUE.

If you plan to interact with your HP BASIC for Windows workspace, we
strongly recommend that you leave the value of IPC Client Timeout at 0
(zero) in the “rmb_conf.exe” utility. Otherwise, a paused action will
eventually generate a timeout error.

158

Working with Switching Topology

This chapter describes how to use switching topology, which is a combination
of physical and logical descriptionsthat define the switching configuration and
interconnections between resources and the unit under test.

For an overview of switching topology, see Chapter 3 in the Getting Sarted
book.

159

Note

Working with Switching Topology
Defining the Switching Topology

Defining the Switching Topology

When you “define” switching topology, you describe its characteristics so
the Test Executive is aware of switchable paths in your test system. Also,
you make the Test Executive aware of hardware modules that are available
as resources during testing.

Your overall goal in defining the switching topology is to describe the
hardware well enough to let the Switching Path Editor control switching
paths during a test, but not so well that you describe every nuance of how the
test system is wired. Thus, your emphasis should be on describing switching
paths inside modules and any wires that interconnect these switching paths.

Overview

The Switching Topology Editor lets you define the three layers of topology

for your test system. This topology information resides in three files:
<system_name>.ust Contains a definition of the system layer.
<fixture_name>.ust Contains a definition of the fixture layer.
<UUT_name>.ust Contains a definition of the UUT layer.

When you specify which layer to create in the Switching Topology Editor, it
loads the appropriate file.

= New Topology Layer

Select the type of topology
layer you wish to create.

Cancel

> Fixture Layer

) System Layer

Shown below is an example we will work through. Let us begin at a
conceptual level and identify the task at hand. Suppose our goal is to connect

160

Working with Switching Topology
Defining the Switching Topology

an instrument to pins on the UUT so the instrument can make a
measurement. To provide flexibility in connecting the instrument, an
Instrument Matrix module connects the instrument to an anal og bus structure

connected to two Relay Matrix modules. One of these modules—the one in
which you are interested—is connected to a mass interconnect, which is the
nexus for connections between the test system and the UUT. From there,

fixturing or cabling connects the mass interconnect to the UUT.

Instrument

2X2
— Instrument —
- Matrix 1
Module

(R 2X4

analog bus

Relay Matrix

Module #1

2X4
Relay Matrix

Module #2 ™|

%
%
%
K
2
>
Q
Q,
%
>

Mass Interconnect

fixturing/cabling

uuT

161

Working with Switching Topology
Defining the Switching Topology

The conceptual diagram above lacks details needed to describe real
hardware, such as pin numbers and connectors. These details are shown

next.
DVM
3
£ 9
= b
T N [} o}
gl |2 ¢ ¢
e = =
— £l 1E 8 S | |||
—E £ £ HER
gﬁ hg InstMatrix:ABus1 PinCard1:ABus1 2X4
il |; ’l : : : : Relay Matrix 1
InstMatrix:ABus2 PinCard1:ABus2 | | | | Module #2
InstMatrix PinCalrd1 | | | |
'R | | | |
1A-19 9 ¢ ®1A4
SyStem Layer | Mass Interconnect
[1 Fixture Interface
Fixture Layer

UUT Layer

Matching Physical Hardwareto L ogical Names

Where Do the Names of Switching Paths Come From?

One question upon examining the example above might be, “Where do the
names of signal paths used in switching, suchrest Mat ri x: ABus1,

come from?” The names of switching paths inside a module are assigned by
whoever develops the hardware handler for the module. The Switching
Topology Editor lets you use these names to define your test system's
topology. The names of other items, such as the pins on connectors, are

162

Working with Switching Topology
Defining the Switching Topology

defined by you and usually reflect the physical characteristics of the item.
For example, connl- 1 ispin 1 of the connector named connl.

In the example above, the hardware handler’s devel oper chose

| nst Mat ri x asthe namefor the 2 X 2 Instrument Matrix Module. In a
similar fashion, thefirst 2 X 4 Relay Matrix Module was named

Pi nCar d1. Both of these modules contain switching el ements that connect
rows with columns when they close. The columnsinthel nst Mat ri x
modul e connect to an instrument, so they are named
InstMatrix:InstrlandlnstMatrix:|nstr2,andtherowsin

| nst Mat ri x connect to the analog bus, so they are named

I nst Matri x: ABusl and | nst Mat ri x: ABus2.

The important thing to realize hereisthat the intersection of any two of these
identifiersis a switching element that can be controlled by the Test
Executive during atest. For example, at the intersection of
InstMatrix:Instrlandl nstMatrix: ABus2 isarelay that, when
closed, connects the hi side of the DVM to the second analog bus. If this
connection is needed during atest, then you could use the Switching Path
Editor to tell the Test Executive when to close (and reopen) it.

Switching elements inside module Pi nCar d1 connect the anal og busses
with wiring to the mass interconnect, which is the interface between the test
system and the cabling/fixturing that connects to test system to the UUT.
Connections on the analog bus are denoted the same as their counterpartsin
thel nst Mat r i x module, while columnsin Pi nCar d1 areidentifiedin a
more generic sense as Pi nCar d1: Col 1 through Pi nCar d1: Col 4.

Using Aliasesto Simplify the Names of Switching Paths

Although this approach accurately describes the hardware, it lacks
convenience for test developers who must remember which connectionis
which when using the Switching Path Editor. For example, the name

I nst Matri x: | nst r 2 provides no clue as to what that signal path
actually is.

The remedy for thisisto use aliases. Aliases et you simplify the definition
of the hardware. For example, instead of referring to

I nst Matri x: I nstr2 you could assign it an alias of DVM | ow. From
then on, you could think in terms of “Conn&M | owto. . ." instead of
"Connectl nst Matri x: | nstr 2 (whatever that is!) to. . ."

163

Working with Switching Topology
Defining the Switching Topology

When Should | Specify Wires?

Remember that the Switching Topology Editor also lets you define wiresin
each layer. An example of awire isthe wire that connects

| nst Matri x: ABusl toPi nCar d1: ABusl. Becausethisisa
connection between modules whose characteristics are modeled in a
hardware handler, you should describe it as part of the topology.

What about the wires that connect the DVM to | nst Mat r i x? Should they

be defined too? Probably not, because defining them offers no additional
functionality. Because instruments (and connectors) are not modeled—i.e.,
they are not defined in hardware handler software—HP TestExec SL is
unaware of their characteristics and cannot control them.

What Happens If a Node Has M ultiple Names?

Each named electrical point in the switching topology is called a “node.” As
described above, the use of aliases and wires lets a hode in the topology
potentially have more than one name. But if a node has more than one name,
which name appears as the “preferred name”"—i.e., the name used to
construct a switching path—when you use the Path Editor?

An example of this is shown below. Here, a node has several possible names:
+15,DC Supply +,PS_MJIX: 2, andMJUX3: C2- HL. The preferred

name, +15, probably is the most meaningful because it describes a major
path rather than an individual node somewhere along the path.

i, Path (1] - Path

Preferred || [[[+151PS_+]

name \,) -
\[Starts at :I K I+15 LI Selected Mode
Mode Hame Sets IN-"'-‘:"-

Alternate Mames:

Startz at

DC Supply +
Ends at|PS_+ PS_MUx:2

Extend with ML C2-HL

Alternate
names

164

Part of the value you can add when defining topology is to ensure the “best”
name (the name that makes the most sense for your circumstances) for each

Working with Switching Topology
Defining the Switching Topology

feature in the topology will appear as the preferred name seen by test
developers when they define switching paths.

How Do | Specify the Preferred Namefor a Node?

You can specify the preferred name for a node by defining the topology in
accordance with the rules the Switching Path Editor uses when it displays

the preferred node name. In order of precedence, you should:

Do this . ..

When a node is referenced in
more than one topology layer,
use the preferred name in the
layer that has precedence.

When a node is associated with
a series of aliases—i.e., one
alias is aliased to another
alias—in the same topology
layer, give the preferred name to
the first alias in the series.

When a node is associated with
both a wire and an alias in the
same topology layer, give the
preferred name to the alias.

When a node is associated with
multiple aliases (but no wires) in
the same topology layer, do
whatever you like.

Because . ..

The order for choosing preferred
names is UUT layer before fixture layer
before system layer.

Within a single layer of topology, the
preferred alias in a series of aliases is
the first in the series. For example, if
al i aslisaliased to al i as2 thatis
aliased to al i as3, the preferred name
isal i asl.

Within a single layer of the topology, an
alias associated with a node is
preferred over a wire associated with
the same node.

Within a single layer of the topology
when multiple aliases exist, the alias
chosen will be the last one entered
when defining the topology. Because
this method tends to be unpredictable,
you should not rely upon it.

165

Working with Switching Topology
Defining the Switching Topology

Defining the System L ayer

Continuing with the example begun earlier, you could use the Switching
Topology Editor to define the following for the system layer of topology:

M odules:
InstM atrix
PinCardl

Wires:
“ABusl” connectd nst Mat ri x: ABusl toPi nCar d1: ABus1
“ABus2” connectd nst Mat ri x: ABus2 toPi nCar d1: ABus?2

These wires are necessary because they interconnect switching modules
whose topology is known to HP TestExec SL. The topology is known
because each module's characteristics are declared in its corresponding
hardware handler software (described later). Because each module's
topology has been modeled for HP TestExec SL, the Switching Path Editor
can control switching elements in it via switching actions in tests.

Using the Switching Topology Editor to specify topology, the definition of
the first wire shown above might look like this:

=8 Layerl [_ o] =]
SlAliases N—
CRTr— ' [AEus] acd
EModules Description: [analag bus #1
T InstMatrix
3 PinCard1
Keywords: I
r Connections
Rief Layer Fef Hode
systerm Insthatnx: ABus1 Mew Cann |
PinCard1:ABus1
Dielate Conn |
Mave Up |
bovee Digwn |
Reference Layer: Reference Hode:
| =] [PinCard1:ABus1 Updste Comn
Filter: inCard1 - ABus’

166

Working with Switching Topology
Defining the Switching Topology

Aliases:

I nst Matri x: I nstr 1 inthesystem layer diased asDVM hi inthe
system layer

I nst Matri x: I nst r 2 inthe system layer dliased asDVM | o inthe
system layer

Pi nCar d1: Col 1 inthe system layer aliased as 1A- 1 in the system
layer

Pi nCar d1: Col 2 inthe system layer aliased as 1A- 2 in the system
layer

Pi nCar d1: Col 3 inthe system layer aliased as 1A- 3 inthe system
layer

Pi nCar d1: Col 4 inthe system layer adliased as 1A- 4 in the system
layer

Aliases were used here instead of wires because there are no switchable
connections. For example, the existence of the cable that connects

| nst Mat ri x with theinstrument is agiven, asisthe wiring that connects
the columns of relays on Pi nCar d1 with the mass interconnect. If thereis
no switchable connection to contral, it is simplest to use an aias to specify
various points along the path.

The benefit of all thiswork becomes more apparent when you consider how
these definitions can simplify the way you specify connections with them.
Suppose you want to make a connection between the high terminal on the
DVM and apin on the mass interconnect. Given the definitions of wiresand
aliases shown above, it could be done as simply asthis:

[DVM_hi ABusl 1A-2]

Note This convention of enclosing the path in brackets and having adjacent nodes
separated by spacesis the default used in the Switching Path Editor. To
avoid confusion when using the Switching Path Editor, we recommend that
you do not use spaces or brackets ([]) when naming features in the topology.

Anoptional Node Separ at or entry inthe[Swi t chi ng] section of

HP TestExec SL's initialization file, ‘4P TestExec SL

home\bin\tstexcsl.ini”, lets you specify which character appears as the
separator between adjacent nodes for a given installation of HP TestExec
SL. For exampleNode Separ ator = | defines a vertical bar as the

167

Working with Switching Topology
Defining the Switching Topology

separator. The separator isnot saved with testplans, so if you move atestplan
from one test system to another the separator may change.

This describes a connection from one terminal on the DVM, through the
relay at theintersection of | nst Mat ri x: I nstr 1 and

I nst Mat ri x: ABus1, acrossthe ABus connecting

I nst Mat ri x: ABus1 and Pi nCar d1: ABus1, through the relay at the
intersection of Pi nCar d1: ABus1 and Pi nCar d1: Col 2, and through
the wire that connects Pi nCar d1: Col 2 to pin 1A- 2 on the mass
interconnect. Notice how much more complicated the actual path is than the
notation needed to describe it using wires and aliases.

Defining the Fixture Layer

The fixture layer for the previous example might look like this:

Wires:
connl- 1 inthefixture layer connected to 1A- 1 in the system layer
connl- 1 inthefixture layer connected to 1A- 2 in the system layer
connl- 2 inthefixture layer connected to 1A- 3 in the system layer
connl- 3 inthefixture layer connected to 1A- 4 in the system layer

At first glance, you may wonder why these are not defined as aliases. After
al, there are no switchable paths in the fixture layer. Notice, however, that
both pins 1A- 1 and 1 A- 2 of the mass interconnect are connected to pin 1 of
connl. Thismeansthat two distinct paths exist to connl- 1, depending
upon which relay isclosed on Pi nCar d1. Thus, these should be defined as
individual wires and not simply aliases for the same point.

If desired, you also could use a combination of wires and aliases, like this:

Wires:
connl- 1 inthefixture layer connected to 1A- 1 in the system layer
connl- 1 inthefixture layer connected to 1A- 2 in the system layer

Aliases:
connl- 2 inthefixture layer aliased as 1A- 3 in the system layer
connl- 3 inthefixturelayer aiased as 1A- 4 in the system layer

168

Note

Working with Switching Topology
Defining the Switching Topology

This layer has no modules defined for it because there are no switching
modulesin thefixture layer for thisexample. If your fixturing included some
form of electronics that was controlled via a hardware handler, you could
defineit asamodulein thislayer.

We recommend that all references from the fixture layer to the system layer
specify pin identifiers on the mass interconnect and not specify aliases or
nodes other than pins on the mass interconnect in the system layer.
Following this suggestion lets you alter wiring in the system layer without
affecting the fixture.

Shown below is auseful variation on defining topology in the fixture layer
(but which will not be a part of the ongoing example). Suppose that instead
of using arelay matrix module to connect an external instrument, you
connect it to the test system viawiring in the fixture. In other words, when
you install the fixture used to test a specific UUT, that fixture contains a
connector to which the instrument is attached. The idea here is that by
connecting the external instrument to the test system through the mass
interconnect, you make the instrument accessible to any relay matrix cards
in the test system.

DVM
Hi Lo Relay Matrix

(mml
[
M
[
(mm
[

M
[
O
|

System Layer

2-1] 2-2 1-1] 1-2] 1-3{ 1-4]| 1-5] Mass Interconnect

} Fixture Interface

wiring inside the fixture Fixture Layer

r L‘ UUT Layer

169

Working with Switching Topology
Defining the Switching Topology

How would you define this topology? Because the connection between the
external instrument—"DVM"—and the test system does not contain a
switchable path, you could specify the topology as:

Wires:
DVM hi in the fixture layer (no connections to other layers)
DVM | o in the fixture layer (no connections to other layers)

Aliases:
DVM hi in the fixture layer aliased 4s 2 in the system layer
DVM | o in the fixture layer aliased 4s 1 in the system layer

Defining wires without connections and aliasing them to pins on the mass
interconnect makes them equivalent. Thus, a refererideMol o actually
means pirl- 1 on the mass interconnect in the system layer.

Defining the UUT Layer

Continuing the example, the topology definition for the UUT layer might
look like this:

Aliases:
connl- 1 in the fixture layer aliased &°U i n in the UUT layer
connl- 2 in the fixture layer aliased &°U _gnd in the UUT layer
connl- 3 in the fixture layer aliased &PU _out in the UUT layer

These are all aliases because there is no switchable path; i.e., the aliasing is
being done simply for the convenience of specify@®y i n when using

the Switching Path Editor instead of trying to remember what is connected

to which pin orconnl or to pins on the UUT.

Notice how the aliases are used to alias items in one topology layer with
items in another layer. This was necessary because conoamidris the
physical interface between the system and UUT layers.

This layer has no modules defined for it because there are no switching
modules in the UUT layer for this example. It has no wires defined for it
because there are no adjacent nodes—i.e., nodes with a switching element
between them—between the fixture and the UUT.

170

Working with Switching Topology
Defining the Switching Topology

Given the topology defined in al three layers, when creating atest you could
use the Path Editor to define a connection between the low terminal on the
DVM and ground on the CPU as:

[DVM_lo ABusl CPU_gnd]

An example of thisis shown below.

i, Path (1] - Path [2 | x|

HHE |[DvM_lo ABus1 CPU_gnd]

|—V'aj »® IAEIUS1 LI ~ Selected Hode

Wade Mame Sets |PinCard1 1311 toclosed
Starts at| Ovh_Io Alkernate Names:
g Insthatriz;ABus1
Yia

PinCard1:ABUS1

Ends at| CFL _gnd

Using the Switching Topology Editor

To Createa Topology Layer

Use the Switching Topology Editor’s graphical toolsto create atopology
layer.

1. Click IE in the toolbar or choose File | New in the menu bar.
2. Choose “Topology Layer”.
3. Choose the OK button.

4. Use the Switching Topology Editor Options box to specify which type of
topology layer to create.

5. Choose the OK button.

171

Working with Switching Topology
Defining the Switching Topology

6. When the Topology Layer window appears, use it to define the topology
for the layer.

7. (optional) If you wish to include summary information about the
topology layer, do the following:

a. Choose File | Revision Information in the menu bar.

b. Usethe Topology Information box to enter summary information in
the appropriate fields.

Tip: For Current Revision, use the Major number to denote large
changes to the topology layer, such as adding a number of aliases,
wires or modules. Use the Minor number to denote small changes,
such as defect fixes or minor enhancements.
¢. Choose the OK hutton to close the dialog box.
8. Choose File | Save Asin the menu bar.

9. Specify aname for the file in which the layer is saved.

Tip: The names of files for topology layers must have a “.ust”
extension—e.g., “system.ust”.

10.Choose the OK button to save the file.
Using Aliases

To Add an Alias
Do the following in the Topology Layer window:

1. Click the Aliases folder in the list area (left pane).

2. Use the editor (right pane) to specify the information for the alias.

172

Working with Switching Topology
Defining the Switching Topology

The information you must specify for an alias includes:

Name

Description

Keywords

Reference Node

Reference Layer

The name of the alias.

Note: We recommend that you do not use spaces
or brackets ([]) in names because that makes
switching paths more difficult to read.

A description of the alias.

One or more keywords, separated by commas,
that aid users when searching for this alias among
all the possible aliases. Keywords are used by the
Filter feature.

An existing name that specifies a node in a
topology layer.

Note: Click the arrow to the right of Filter to
invoke alist of keywords that restrict the search
criteriain the Reference Node list.

The topology layer that contains the reference
node.

3. Choose the Add button.

To Moaodify an Alias

1. Inthe Topology Layer window, click to open the Aliasesfolder in thelist
area (left pane) if itisnot already open.

2. Click the alias you wish to modify.

Tip: You can use thelist of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Usethe editor (right pane) to modify the information for the existing

dias.

4. Choose the Update button.

173

Working with Switching Topology
Defining the Switching Topology
To Deletean Alias

1. Inthe Topology Layer window, click to open the Aliasesfolder in the list
area (left pane) if it is not already open.

2. Click the alias you wish to delete.
3. Do either of the following:
» Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.
4. Choose the Update button.
Using Wires

To Add aWire
Do the following in the Topology Layer window:

1. Click the Wires folder in the list area (left pane).
2. Use the editor (right pane) to specify the information for the wire.

The information you must specify for a wire includes:

Name The name of the wire.

We recommend that you do not use spaces or
brackets ([]) in names because that makes
switching paths more difficult to read.

Description A description of the wire.

Keywords One or more keywords, separated by commas,
that aid users when searching for this wire
among all the possible wires. Keywords are used
by the Filter feature.

174

Connections

Reference Node

Reference Layer

Working with Switching Topology
Defining the Switching Topology

One or more nodes to which the wire is
electrically connected.You can click:

New Conn—add a new connection to the list.

Delete Conn—remove the selected connection
from the list.

Move Up—promote the position of the selected
connection in the list.

Move Down—demote the position of the
selected connection in the list.

An existing name that specifies a node in a
topology layer. Note: Click the arrow to the right
of Filter to invoke a list of keywords that restrict
the search criteria in the Reference Node list.

The topology layer that contains the reference
node.

3. Choose the Add button.

To Modify a Wire

1. Inthe Topology Layer window, click to open the Wires folder in the list
area (left pane) if it is not already open.

2. Click the wire you wish to modify.

Tip: You can use the list of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Usethe editor (right pane) to modify the information for the existing

wire.

4. Choose the Update button.

175

Working with Switching Topology
Defining the Switching Topology

To Deletea Wire

1

4.

In the Topology Layer window, click to open the Wires folder in the list
area (eft pane) if it is not already open.

Click the wire you wish to delete.
Do either of the following:
» Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.

Choose the Update button.

Using Modules

To Add aModule
Do the following in the Topology Layer window:

1.

2.

Click the Modules folder in the list area (left pane).

In the editor (right pane), click the Library field and either type the name
of the library file that contains the module's instrument driver/handler or
use the Browse button to find the correct file.

If you are using a VXlug& play driver, enter the Prefix (described
below) that identifies the instrument.

Choose the Add button to load the parameter block for the instrument.
Do the following for each parameter in the list under Parameter Block:
a. Select the parameter.

b. Choose the Edit button.

c. Specify the information to be passed in the parameter.

176

Working with Switching Topology
Defining the Switching Topology

6. Enter the remaining information for the module (described below).

7. Choose the Update button.

The information you must specify for amodule includes:

Name

Disable

Description

Prefix

Library

Parameter block

To Modify aModule

A unique name for the module.

We recommend that you do not use spaces or
brackets ([]) in names because that makes switching
paths more difficult to read.

Enable this box to have the Test Executive ignore the
module, such as when you remove it for calibration.

A description of the module.

An identifier that is generally used with

VXIplug& play instruments to identify the type of
instrument. Enter the name of the instrument as it
appears in calls to the VXIplug& play driver; e.g.,
calls to HP663x2-series instruments begin with
“hp663x2” (as in “hp663x2_init") so that is what you
should enter.

The name of the library (DLL) that contains the
hardware handler for the module. In the case of a
VXIplug& play instrument, specify the name of the
DLL in which the VXIplug& play driver for the
instrument resides.

A list of parameters passed to the module in its
parameter block. If the DLL for the module is not
found, the list will be empty.

1. Inthe Topology Layer window, click to open the Modules folder in the
list area (Ieft pane) if it is not already open.

2. Click the module you wish to modify.

177

Working with Switching Topology
Defining the Switching Topology

3. Usethe editor (right pane) to modify the information for the existing
module.

4. Choose the Update button.

To Delete a M odule

1. Inthe Topology Layer window, click to open the Modules folder in the
list area (Ieft pane) if it is not already open.

2. Click the module you wish to delete.
3. Do either of the following:
e Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.
4. Choose the Update button.

Duplicating an Alias, Wire, or Module

Instead of specifying the characteristics of similar aliases, wires, or modules
multiple times, you can copy an existing item and then rename it or modify
its characteristics.

1. With a switching topology layer loaded, select an existing alias, wire, or
module in the left pane (list area) of the Switching Topology Editor.

2. Choose Edit | Duplicate in HP TestExec SL's menu bar.

The duplicate entry will appear below the existing entry.

178

Working with Libraries, Datalogging,
Symbol Tables, & Auditing

This chapter describes how to use libraries of actions and tests to promote code
reusability, datalogging to collect data during testing, symbol tables to store
global variables, and auditing features to track software revisions.

For related overview topics, see Chapter 3 in the Getting Sarted book.

179

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

Using Test & Action Libraries

For an overview of test and action libraries, see “About Test & Action
Libraries” in Chapter 3 of th&etting Sarted book.

How Keywords Smplify Finding Itemsin Libraries

When you save an action definition or a test definition in a library, you have
the option of specifying one or more “keywords” with the definition. A
keyword is an identifier used to restrict the number of matches found when
searching for a specific item. Keywords often describe the item; for
example, suitable keywords for an action might be “trigger” or “range” to
identify what the action does or how it is used. Once you have searched for
items whose keywords seem appropriate, you can inspect the resultant list
and choose the correct item from it. Or, you can set up a new search and try
again.

Because the number of actions you create can grow quite large, when
working with actions (as opposed to tests) you can use an additional feature
called “master keywords.” Master keywords are keywords stored in an
editable predefined list, which lets you quickly choose a keyword when
creating actions. A major benefit of master keywords is that you can
standardize the list for consistency when finding actions in libraries.

Having meaningful keywords assigned to items in libraries lets you use
HP TestExec SL's browsing tools to find items quickly. Although specifying
keywords requires slightly more effort initially, over time you will benefit
from enhanced code reuse.

Searching for Itemsin Libraries

Before you can search libraries, you must set up their search paths, as
described under “Specifying the Search Path for Libraries.”

180

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

Searching for ActionsinalLibrary

HP TestExec SL provides two ways to search for actionsto insert into tests.
The first, which is on the Step-byStep Search tab and shown below, uses
multiple keywords and provides step-by-step guidance, which makes it
useful for beginners.

: Insert Action E

r Find action[g] to inzert

Step-by-Step Search | Quick Search I

Step 1 Step 2 Step 3
Beqin your zearch by Fiefine your zearch by Select the desired action[s]
zelecting a kewword from zelecting a second fram thoze that contain
all the available keywords, keyward fram thosze both keywards and choose
azzociated with the first, Inzert.
dermo StdDialogOkay -
demo dialog StdDialogO kayCancel
dialog mzg StdDialogvezMo

The second search method, which is on the Quick Search tab and shown
next, uses a single keyword and can be faster for experienced users.

: Insert Action m

— Find action(z) to ingert

Step-by-Step Search | Quick Search I

Search by keyword: [4. ;I

Timnerasait
StopT estplan
SendserDefinedt
SendlzerDefinedd] M=
SendTraceMsg UI_debug
SendShortF eporthd 4 utility

The name of the action searched for is the name the action was given when it
was created with the Action Definition Editor, which is not necessarily the
same as the name of the file in which the action definition resides.

181

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

Searching for TestsinalLibrary

A common task when creating testplans is to search for tests to use in them.
The search mechanism used to search for a saved test definition so you can
insert it into a testplan is shown below.

Select a Test Definition

=P | [Search by keyword
Ayailable Search Keywords: Search on Kewaonds:

Idemo Search |
Doing utity add > |

the

search (< Bamave|
Clear |

r Search Results

Test Definition Mame:
|Check Frequency Description:

Check Frequency - -
Check Overshoot J
Results Check Rizetime

vV

Check Woltage Peak to Peak
of the Integer Approve

Integer Rejact

SeaI’Ch ?e_nd F_Heport Meszage ;I
Filenarne: C:\Program Files\HP TestExec SL\sampleshfiterdemottestplant Check Perio D etail |

ak. Cancel |

)

The general procedure for doing a search for atest is shown below.

Select a Test Defimition

~ Search by kepwaords 2 Add them
dwailable Search Kewwords: to the list _‘earchon Kepwords:
\
demo \ Search |

demo

Add - |
<- Bemove |
Clear |

1 Select
keywords

3 Do the
search

182

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

If desired, you also can:

« Choose the Remove button to remove a selected keyword from the search
list.

» Choose the Clear button to remove all keywords from the search list.

Strategiesfor Searching Libraries

Built into the Test Executive's graphical tools are several features that help
you search the contents of libraries for a specific routine. Your general
strategy when searching should be to reduce the list of matches as quickly as
possible, until only a few potential items of interest must be browsed to find
the desired one.

To quickly find the item of interest, you can:

« Limit the list of library directories of each type to be searched.
By restricting the list of directories to those most likely to contain entries
useful for the test under development, you can eliminate many
unnecessary entries before beginning the search.

« Use keywords to narrow the search.
Select one or more keywords from those known to be in the entries, and
only library entries with all the selected keywords will be displayed in the

list of matches.

« Type the first few characters of the name of the desired entry to position
the list of entries to the appropriate part of the alphabetized list.

The features used to search libraries work best when the libraries are
carefully defined and organized. Where possible, do the following:

» Organize library directories such that the entries in them are logically
related and likely to be needed in similar testing situations.

* Be sure that the names of libraries and the entries in them reflect their
contents.

183

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

« Use meaningful keywords when describing the entries in libraries.

« Provide related entries with similar prefixes on their names (which
improves HP TestExec SL's ability to sort by name).

+ Use HP TestExec SL's Action Libraries box or Test Libraries box to find
whichever kind of routine you need.

Specifying the Search Path for Libraries

HP TestExec SL lets you specify the search paths for action definitions,
dynamic link libraries (DLLs), HP VEE libraries, instrument drivers,
National Instruments LabVIEW libraries, symbol tables, test definitions, and
layers in the switching topology. You can specify these paths at two levels:

Testplan-specific Paths that are specific to whichever testplan currently
is loaded, and override paths specified at the
System-wide level.

System-wide Default paths that apply unless they are overridden at
the Testplan-specific level. If you create a new
testplan and do not specify specific paths for it, these
defaults will be used.

184

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

In either case, you use adialog box similar to the one shown below.

E:-:eu:utiu:unl Hepnrtingl Profiler | Search Paths |

Search paths for;

Diynamic Link, Libraries
=gy HF VEE Libraries
MalilE | ot ment Dirivers

MI LabWIEW Libraries
Symbol T ables

Testplan specific;

:WProgram Files

Inzert. .

Edit...

Delete

L | | _PI bove Up

bdionee Dhouean

i dul

Syztem-wide:

c:WProgram FileshHP TestEwec SL

Search paths are searched in the order shown in the lists under
Testplan-specific and System-wide. This meansthat if your testplan uses a
specific DLL, and multiple instances of that DLL exist on your test system,
only the first instance of the DLL to be found will be used.

Given the above, modifying the order in which the paths are searched

potentially influences which items are found. You can use the Move Up and

Move Down buttons or “drag and drop” with the mouse to reorder the search
paths in the lists.

To Specify System-Wide Search Pathsfor Libraries

1. With no testplan loaded, choose Options | System Options in the menu
bar.

2. In the list to the right dBear ch pat hs for: , choose which kind of
system-wide search path you wish to specify; i.e., a search path for action
definitions, dynamic link libraries, etc.

3. Choose the Insert button.

185

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

4. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

5. Choose the OK button to save the new path in the list under
System-wide.

To Specify Testplan-Specific Search Pathsfor Libraries

1. With atestplan loaded, click in the toolbar or choose
View | Testplan Optionsin the menu bar.

2. Inthe Options box, choose the Search Paths tab.

3. Click to select an insertion point in the list of search paths under
Testplan-specific.

If you click in thelist of System-wide search paths, you also can specify
those here. Be aware, though, that changes made here become the new
system defaults. Use whichever method you prefer.

4. Choose the Insert button.

5. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

6. Choose the OK button to save the new path in the list under
Testplan-specific.

To Remove a Path from the List of Search Paths
1. Click in the toolbar or choose View | Testplan Optionsin the menu
bar.

2. Inthe Options box, choose the Search Paths tab.

186

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

3. Inéeither of the lists of search paths, click the search path to be deleted.
4. Choose the Delete button.

5. Choose the OK button.

Using Search Pathsto Improve Testplan Portability

Having two levels of search paths, testplan-specific and system-wide as
described above, is especialy useful when testplans must be transportable
across test systems. For example, if you specify only system-wide search
paths, atestplan moved from one system to another will automatically use
the default search paths for the new system. On the other hand, specifying
testplan-specific search paths lets you override the defaults as needed, so
you know exactly which files agiven testplan will use.

187

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Using Datalogging

This section discusses datalogging options, disabling datalogging for
individual tests, using datalogging with Q-STATS programs, datalogging
files and their formats, and how to change between datal ogging formats.

What Happens During Datalogging?

Datalogging automatically collects data about tests that have pass/fail limits
specified for them when atestplan runs. Subsequent study of this data can
help you improve the testing and manufacturing process and track the testing
done on a particular UUT.

The system writes anew file of datalogging information each time atestplan
or aloop in atestplan runs. The system automatically names each file with a
unigue hexadecimal name derived from the system date and time plus an
extension of “.xml” or “.log” depending upon the format chosen for it.

The flow of data is shown below. First, data acquired during testing is
formatted using a definition for internal data, and stored internally. Next, the
internally stored log data is reformatted using a definition for output data,
and saved in an external data file for subsequent analysis.

Operator
Testplan HP TestExec SL Interface

Internal

Testing Data acquired Processing > > Formatter for - =8
activities | during testing > of log data I;)t%gzt: log data output
f Log data
Definition for how file
data is formatted "xx.xml"

or
"xx.log"

The diagram above also shows an optional path by which log data can be
sent to an operator interface for post-processing. To simplify this,
HP TestExec SL provides an ActiveX™ datalogging control for use in

188

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Datalogging

operator interfaces written in Visual Basic; see Chapter 3 in the Customizing
HP TestExec SL book.

What isthe Behavior & Format for Logged Data?

Datalogging can have the following behaviors:

TXSL Log records conform to a proprietary log record schema used
by HP TestExec SL. This is the default behavior and the one
recommended for general use.

HP 3070 Log records conform to a subset of the records produced by a
HP 3070-family board test system. This means you can use
Derby Associates Q-STATS Il or HP Pushbutton Q-STATS to
do statistical analysis of log data.

The choice of behavior determines the names of the log records but not the
format of the datain the fields inside them.

If desired, you can modify the records and fields that appear in datalogging
files. See Chapter 3 in the Customizing HP TestExec S book.

For any given behavior, you have a choice of formats that determine the
presentation of the data. These are:

Spreadsheet

XML

HP 3070

Datalogging files are written with each record on a
separate line and the fields separated by commas. This
format, which is readable by most spreadsheet or
database programs, lets you develop your own methods
for analyzing log data with the functions available in a
spreadsheet.

Datalogging files are written in XML (eXtensible Markup
Language) format. Because XML is a standard for
describing data, the use of XML lets you use commercially
available tools to view or process datalogging files.

Datalogging files are written in the format used by the
HP 3070 family of board test systems.

189

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Controlling How Datalogging Works

To Set the Datalogging Optionsfor an Entire Testplan

1. Click in the toolbar or choose View | Testplan Optionsin the menu
bar.

2. When the Testplan Options box appears, choose its Reporting tab.
3. Choose the desired options.

The global datalogging options for atestplan are:

Enabled When this box is checked, datalogging is enabled for
the current testplan, and datalogging is disabled when
the box is unchecked.

Log Report When this box is checked, any messages that appear
Information in the Report window will be included in the
datalogging log file.

190

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Log Level Determines how much and which kind of data is
collected during datalogging, as follows.

Al | —Logs a header for each testplan that was
executed, plus information about how its tests passed
or failed.

None—Logs a header for each testplan that was
executed, but does not identify whether its tests
passed or failed.

Fai | ur es—Logs a header for each testplan that
failed, plus information about how its tests failed.

Sanpl ed—Logs a header for each testplan that was
executed. Logs information for all tests that fail. Also,
logs information for a specified percentage of passing
tests.

Sanpl e rate %—Sets the percentage of passing
tests to be sampled when the testplan is run.

Log Directory Specifies the directory that will hold the datalogging
files. (By default, log data is stored in directory
“\logdir”.) If the system cannot access the indicated
directory, log files will be temporarily placed in the
directory specified by the system variable TMP.
(Usually this is the “\temp” directory.) The system will
attempt to move the log files to the current log directory
each time a testplan runs.

4. Choose the OK button.

To Change the Datalogging Optionsfor an Individual Test

Options on the Reporting tab of the Testplan Options box (View | Testplan
Options) let you specify the global behavior of datalogging across al of the
testsin atestplan. As described below, you can also change some options for
individual testsin atestplan.

1. Click atest of interest in the left pane of the Testplan Editor window.

191

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

2. Choose the Options tab in the right pane of the Testplan Editor window.
3. Choose the desired options for the test.

The datalogging options for individua tests are:

Generate Check this box and the selected test’s data will be
unigue names logged under a uniqgue name each time the test is
for datalogging executed inside a loop (such as For . . . Next).2

when looping

Pass/Fail only Check this box to disable datalogging for the

affects ‘On Fail selected test.

Branch To’
Be aware that this option does more than turn off
datalogging for an individual test. It also disables
any pass/fail messages normally sent to the Report
window, cancels any effect of the test on global
pass/fail information, and causes statement tracking
to be skipped for the test. However, the “On Fail
Branch To” feature still works.

Override the If you want to have the selected test logged under a
Test Name for different name, check this box and specify the new
Datalogging name in the data entry field to the right of New

Test Nane for datal ogging:.

a. Unique names are generated in log data by appending a unique integer
onto the name of the test; e.g., “Testl”, “Test2".

4. Choose the OK button.

To Select the Datalogging Behavior and For mat

You can switch among the various datalogging behaviors and formats
(described earlier under “What is the Behavior and Format for Logged
Data?”) by editing the HP TestExec SL initialization file, as follows.

192

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

1. Useatext editor, such a WordPad in its text mode, to open file
“<HP TestExec SL home>\bin\tstexcsl.ini”.

2. Locate the [Data Log] section in the initialization file and specify which
set of behavior and format files to use. (The [Data Log] section has
comments that describe how to do this.)

3. Save the modified inialization file and exit the text editor.

For more information about datalogging formats and customizing
datalogging, see Chapter 3 in thestomizing HP TestExec S book.

Using Datalogging with a Spreadsheet

Because they are a familiar tool in the business world, spreadsheets provide
a useful and straightforward way to examine or manipulate data acquired via
datalogging. The following topics describe how to use datalogging files with
a spreadsheet.

To Configure Datalogging for Use With a Spreadsheet

If you need more information about the log records described below or about
using the Datalogging Configuration Editor, see the online help for the
Datalogging Configuration Editor.

The basic approach to using datalogging with a spreadsheet is to use only
two types of records for datalogging information that appears in the

spreadsheétThe first is a LogBatch record, only one of which will be
produced, that contains a row of titles assigned to columns in the
spreadsheet. The second is a LogLimit record that contains information
about the test’s pass/fail status and its limits. BechlisegLimit records

are produced—one for each execution of a limit checker—the contents of
each LogLimit record populate one line in the spreadsheet.

1. Use the Start menu in Windows to run the Datalogging Configuration
Editor.

1. Other types of records are present, but they contain no fields.

193

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

2. Choose File | Open in the Datalogging Configuration Editor's menu bar.

3. Specify the record and field definition files shown below, which contain

predefined definitions you may be able to use as-is.

File Open/Save

r Record Definition File

Browsze Becord

C:MProgram FileshHP TestExec SLAbiIRAT#SLS5R ecords. rdef Files. .

— Field Definition File

IE:HPngram Files\HP TestErec SLAbIn\T=SL55Fields. fdef Browse Field

Filez...

it

4. Choose the Open button.

5.

If the fields specified to appear in the LogLimit record do not meet your
needs, specify which fields you want in that record. The top-to-bottom
order in which they appear in the editor is the order in which they will
appear in columns in the spreadsheet.

You now have the option of specifying different headers, trailers, and
separators for the data sent to the spreadsheet. The following are true when
you use the recommended record and field definition files or whenever you
choose the AutoCreate Headers, Trailers and Separators button to restore the
headers, trailers, and separators to their default values for spreadsheet
compatibility.

The trailer for the LogLimit record is a line feed, and the separator
between items is a comma. This results in fields separated by commas
and instances of the LogTest record separated by line feeds, which makes
the format compatible with a spreadsheet.

The header created for the LogBatch record is a comma-separated,
quoted, ordered list of field names from the LogTest record. This
provides the heading for columns in the spreadsheet.

194

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging
« All other records headers, trailers and separators are empty strings.

6. Do the following if you wish to modify the headers, trailers, and
separators:

a. Select arecord in the left pane of the editor.
b. Choose the Edit Record Definitions button.

c. Use the drop-down list adjacent to Record Name to choose the
LogBatch or LogLimit records, and then modify their headers,
trailers, and separators as desired.

Suppose you want to make the field separator a tab. Tabs are specified
in headers, trailers and separatord by Type two characters: a
backslash followed by “t”. Similarly, you can specify a new line by
entering\ n.

d. Choose the Done button.
7. Save the results.

You have two choices when saving modified files. First, you can use
File | Save to resave them under their original names, which overwrites

the original filed. Second, you can use File | Save As to save them under
alternate names, which preserves the originalztiles

8. Choose File | Exit to close the Datalogging Configuration Editor.

1. If you installed HP TestExec SL with the Custom option and chose to install
backup copies of the configuration files, you can always find copies of the
original files in directory “HP TestExec SL home>\DefaultConfiguration”.

2. If you change the names of the files, edit the [Data Log] section of file
“<HP TestExec S home>\bin\tstexcsl.ini” so it specifies the new files.

195

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

What'’s Inside a Datalogging File Formatted for Spreadsheets?

A sample of the datalogging file that HP TestExec SL generates for use with
spreadsheets—i.e., when File Type is set to “Spreadsheet™—is shown

below!.

"Serial Nunber", " Test pl anStart Ti ne", " Test pl anNameNoSuf fi x", " Test Nane",
"Test Judgnent ", "Lim t Judgnent ", "Li m t Last Measur edVal ue", "Li m t H ghLi m
it","LimtLowLimt"

123, 990125105834, 5Fai l ures, NewTest 1,1,1,-1,1
123, 990125105834, 5Fai |l ures, NewTest 2, 1,1, -2, 2
123, 990125105834, 5Fai |l ures, NewTest 3, 1,1, -3, 3
123, 990125105834, 5Fai | ures, NewTest 4, 1, 1, - 4, 4,
123, 990125105834, 5Fai | ures, NewTest5,1,1,-5,5,5

A WNPEP

The first row contains headings for the columns in which items in

subsequent rows appéaEach subsequent row contains the results for a
single test. For example, in the second row the value of “TestName” is
“NewTest2”, the value of LimitHighLimit is “2”, etc.

How Doesthe Data Appear in a Spreadsheet?

When loaded into a spreadsheet as comma-delimited data, the rows and
columns arrange themselves into a spreadsheet’s representation of data in a
grid, as shown in the excerpt below.

A | B | C | D | E | F |
1 |Seriallumber |TestplanStanTime TestplanflamenloSuffix| TestMame TestJudgment LimitJudgment Lin
2 123 9.90125E+11 SFailures MewTest] 1 1
3 123 9.90M125E+11 SFailures MewTest? 1 1
4 123 9.90M125E+H1 SFailures MewTestd 1 1
5 123 9.90125E+11 SFailures MewTestd 1 1
G 123 9.90125E+11 SFailures MewTests 1 1

Notice how each column has a heading that identifies its contents. Each row
that follows the row of headers contains the results from a single test.

1. Thefirst threelines are asingle row wrapped as-is because the row of datais
too long to fit on this page.

2. The names of columns correspond to names in the datal ogging schema
described in the online help for the Datalogging Configuration Editor.

196

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Why You May Need to Reformat the Data

Notice how the values of “TestplanStartTime” in the example above are
formatted in scientific notation. When importing the data, the spreadsheet
attempted to format this value, which is derived from the system date and
time. However, the value was formatted incorrectly because itis in a
non-standard format that is unknown to the spreadsheet.

Reformatting the cells in which values for “TestplanStartTime” appear
returns the data to its original representation in the datalogging file. The
example below shows those cells reformatted as numbers without decimal
places.

A

[& [¢ [o [E | F |

o e L R —

=eralMumber Te

re TestplanMamerloSuffix| TestMame Testludgment LimitJudgment | Lir
Nailures MewTestl
MewTest2
MewTestd
MewTestd
MewTeasts

RN ST P N Y
R T O T ey

This example shows how you may need to reformat the data from
datalogging files into a format that suits your needs. This is especially true if
you customize datalogging to acquire data in formats unique to your testing
environment.

For more information about datalogging formats and customizing
datalogging, see Chapter 3 in thestomizing HP TestExec S book.

To Import a Datalogging File into Microsoft Excel 97

Microsoft Excel 97’s Text Import Wizard simplifies the task of importing
datalogging files that contain comma-delimited data.

1. Choose File | Open in Excel's menu bar.

2. Use the Open box to locate and open the datalogging file of interest.

Note

You may need to séti | es of type: to “All Files (*.*)" to make your
file visible.

197

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Datalogging

3. In Step 1 of the Text Import Wizard, verify that the “Delimited” option is
chosen, as shown below.

TotInport Wizad Stepiof3 ____________HH

The Text Wizard
If this is correct,

riginal daka by,

Choose the file byvpe that best describes vour data:
ed!

8 Exed ﬂid}:h - Fields are aligned in colurmns with spaces bebween each Figld.

has determined that wour daka is Delimited,
choose Mext, or choose the Data Type that best describes vour daka,

pe

- Characters such as commas or kabs separate each fizld,

4. Choose the Next button.

In Step 2 of the Text Import Wizard, the delimiter between data items, as
shown below. This example assumes you are using comma-delimited

data.

This screen le

Text Import Wizard - Step 2 of 3

ks wou set the delimiters wour data contains, You can see

b wour text is affected in the preview belaw,

elimiters

..........

[space

[T Treat consecutive delimiters as one

[semicolon W Comma
[T other: I Text Qualifier: I]'

6. Choose the Next button.

7. If you have specific formatting needs addressed by Step 3 of the Text
Import Wizard, which is shown below, select columns and specify how

198

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

they should be formatted. This step aso lets you specify columns to be
skipped instead of imported.

Toxtimpor Wizsd Step3ot3 @R

This screen lets vou select each column and set alumn data Format
the Data Format, & General

‘zeneral' converts numeric values to numbers, date O Text
walues to dates, and all remaining values to kext, C Date: MDY -

™ Do not import column (Skip)

Ceneral Leneral Lenerkl
eztplanStartTime [TestplanHameNoSuffix TestH| «
990125105834 [SFailures levTe

8. Choose the Finish button.

Using Datalogging with Q-STAT S Programs

When you use HP 3070-style datal ogging records, you can use Derby
Associates Q-STATS |1 or HP Pushbutton Q-STATS to do statistical
analyses of log data. This section describes how to pass limits to these
programs and restrictions on the names of tests.

To Set the Learning Feature & Pass LimitsInformation

You must pass limits information to the Q-STATS program to construct
accurate histograms from the data. To pass limits, you must run the testplan
once with the learning feature set to “on.” This setup tells the Q-STATS
program that you will pass data limits as well as values.

1. Choose Options | Testplan Options in the menu bar.
2. When the Testplan Options box appears, choose its Reporting tab.

3. Turn on datalogging by enabling the Enabled check box under
Datalogging.

199

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

4. Set the datalogging level to “all” by enabling the All radio button to the
right of Log Level..

5. Choose the Execution tab in the Testplan Options box.

6. Select Ignore All Failures under Sequencer Halting on the Execution tab.

7. Run the testplan.

Any time you change the test limits, you must re-run the testplan with
learning set to “on” as described above.

Restrictions on the Names of Tests

Q-STATS Il and HP Pushbutton Q-STATS each impose restrictions on the
test names that you choose within HP TestExec SL:

e For HP Pushbutton Q-STATS, you must not use slashes (/ or) in test
names.

e For Q-STATS Il, only the first 40 characters of the test name are
significant.
Managing Datalogging Files

If you set the datalogging level to “all”, HP TestExec SL can quickly fill up
the disk that contains the datalogging directory. See “Managing Temporary
Files” in Chapter 6 for more information.

Troubleshooting Problems with Datalogging

If datalogging fails to work as expected, consider the following:

 |If there is no datalogging information, do you have datalogging enabled?
See the description of tlienabl ed option under “To Set the
Datalogging Options for an Entire Testplan” earlier in this chapter.

« If there is no datalogging information, does your testplan include tests
whose pass/fail limits are checked? Tests must be evaluated against

200

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

pass/fail criteria to produce datalogging information. See “To Specify the
Limits for a Test” in Chapter 2 of tHdsing HP TestExec SL book.

If datalogging information is present but not what you need, are the
options for the log level set correctly; i.e., are you logging the right
information? See the description of theg Level option under “To
Set the Datalogging Options for an Entire Testplan” earlier in this
chapter.

If datalogging information is present but it does not contain report
information, do you have reporting enabled? See the description of the
Log Report | nformation option under “To Set the Datalogging
Options for an Entire Testplan” earlier in this chapter.

Are you sending datalogging information to the wrong directory? See the
description of theeog Di r ect or y option under “To Set the
Datalogging Options for an Entire Testplan” earlier in this chapter.

201

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Symbol Tables

Using Symbol Tables

About Symbol Tables

Symbol tables contain data items (variables) called “symbols” whose scope
makes them available within a testplan. You typically access symbols by

referencing them from tests, actions, or flow control statements.

Symbols in this table...

Sequencelocals

System

TestPlanGlobals

TestStepLocals

TestStepParms

External (user-named)

Have this scope

Across all tests in a sequence; i.e., each
sequence has its own SequencelLocals symbol
table. Variables defined here can be used to
pass values between tests because the
variables are visible within a given sequence
throughout the testplan.

Global to the testplan and all tests and actions
in all sequences. Contains predefined symbols
associated with the testing environment, such
as the user ID, test system ID, and serial
number of the UUT.

Global to the testplan and all tests and actions
in all sequences. Variables defined here can
pass values anywhere within a testplan.

Across all actions inside a test in a sequence;
i.e., each test has its own TestStepLocals
symbol table. Variables defined here can be
used to pass values between actions inside the
current test but not to actions in other tests.

Specific to a test in a sequence; i.e., each test
has its own TestStepParms symbol table.
Variables defined here contain parameters
passed to the test.

Global to the testplan and all tests and actions
in all sequences.

202

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

The hierarchy of symbol tables, and their scope, is shown graphically below.

—_—_————_—t—e——_—e—_e—_e—_e—_e—_ e —_ e, — —

I I
I | TestP/anGloba/s| | System | | External... | I
I I
I]

| |Testplan (Main Sequence) :
| | SequenceLocals| . I
I Testplan (Main Sequence) I
I I
| || Testl | TestStepParms| |SequenceLocals| |
I I
: | TestStepLocals| Test1l | TestStepParms| :
T | TeststepLocals||| !
' Actions |
I I
I | N | —

| Actions :
| ..moretests... ¢ || |
|| Testn !
| | TestStepParms | ... more tests ... |
I I
I | TestStepLocals | Testn | TestStepParms| I
I I
e | TeststepLocals ||| |
| Actions |
[T | Y | |
: Actions :
5 | oo |
I I
e e e e e -

Within the scope of testplans and tests, you can use HP TestExec SL's
graphical tools to access symbol tables from the Test Executive
environment. For example, View | Symbol Tables lets you examine or
modify the contents of symbol tables. If you wish to interact with symbol
tables from actions, you must use the C Action Development API described
in Chapter 2 of th&eference book.

Predefined Symbolsin the System Symbol Table

The System symbol table contains the following predefined symbols, all of
which allow read/write access. The values of some symbols are
automatically updated by HP TestExec SL, while others are simply

203

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Symbol Tables

placeholders reserved for your use; i.e., you must explicitly write values to

them.

FixturelD

ModuleType

OperatorName

RunCount

SerialNumber

TestInfoCode

TestInfoString

TestStationID

TestStatus

A string that contains a unique identifier for
whichever fixture (if any) the current testplan
uses to test the UUT. (placeholder)

A string that contains the identifier of the type
of UUT. (placeholder)

A string that contains the name of the current
login. (automatically updated)

An Int32 whose value contains how many
times the current testplan has been run since
it was loaded. It starts at 1 and increments by
1 each time. Choosing a different variant does
not affect its value. (automatically updated)

A string whose value contains the serial
number of the module currently being tested.
(placeholder)

An Int32 whose value contains the code
number set by the user fail mechanism. Its
value is 0 if the test has not failed via the user
fail mechanism. (placeholder)

A string returned from the user fail
mechanism. (placeholder)

A string that contains the identifier of a test
station if you have more than one.
(placeholder)

An Int32 whose value contains the pass/fail
judgment for the most recent test. Its value is
-1 if the test had no limits checker, O if the test
passed, and N if the test failed. In the case of
a failure, N equals the number of failures. For
a scalar value that fails, N will be 1. For a
one-dimensional array that fails, N will be the
number of failing values in the array.
(automatically updated)

204

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

UnhandledError A string array that contains the contents of the
exception stack if an exception was detected
while running a testplan. The array’s contents
are the exception strings that appear in the
Report window. (automatically updated)

UnhandledErrorSource A string that contains the name of the test that
was executing when the most recent
exception was detected. If no test was
executing, the value is a null string.
(automatically updated)

If desired, you can have actionsin your tests examine or modify these values

as needed. For example, you could examine Test St at us to determineif a

test failed and then change the test’'s parameters and rerun it before deciding
that it ultimately fails. Or, you could examine the valu®oehCount and

have a test execute the first time a testplan runs but not during subsequent
runs.

How Symbols Are Defined in Flow Control Statements

Be aware that symbols are defined “on the fly” when you use flow control
statements. For example, specifying “For Counter = 1to 5 Step 1”
automatically creates a symbol nan@xlint er in the SequencelLocals
symbol table for the current sequence. As with symbols you define
explicitly, you can interact programmatically with these symbols.

If you delete a flow control statement for which a symbol was created
automatically, you must manually delete that symbol from the symbol table
in which it resides.

205

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

Programmatically I nteracting with Symbols

The method used to examine or modify symbols depends upon where you
are when you access them.

In...

testplans

tests/test groups

actions

You can...

Use a flow control statement to examine or modify the
value of a symbol and act upon it. The syntax for
accessing symbols from flow control statements is
<symbol table. symbol>. For example:
If System RunCount = 1 Then
| Execute first time testplan runs
test MyTest
end if

Pass a parameter that references a symbol in a symbol
table; e.g., Syst em Test St at us. (The ampersand
to the left of the name of the parameter provides a
visual cue that the parameter references a symbol.)

Test Parameters |.f3-.|:ti|:|n3| Lirvitz | Dptinnsl Dncumentatinnl

Farameters for Test 'Testl'

Harmne Walle Diata Tope
@ k Syztem. TestStatuz |Integer [32 bit)

Use the Ut aTabl eRegFi ndDat a() API function to
return the value of a symbol in a symbol table.

To Examine the Symbolsin a Symbol Table

1. With atestplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbol Tables box appears, click the name of the desired
symbol table in the list near Tables.

3. Browsethelist of symbolsand their characteristics that appears.

206

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

4. When you have finished using the Symbol Tables box, choose the Cancel
button.

To Add a Symbol to a Symbol Table
1. With atestplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbols Table box appears, click the name of the desired
symbol table in the list near Tables.

3. Do thefollowing for each symbol you wish to add:
a. Choose the Add Symbol button.
b. Define the characteristics of the new symbol.
You can click arow under Value and choose the IZI button to invoke
a separate editor for the symbol or expand the tree view of the

symbol’s characteristics and edit items directly.

4. Choose the OK button.

To Modify a Symbol in a Symbol Table
1. With a testplan loaded, choose View | Symbol Tables in the menu bar.

2. When the Symbols Table box appears, click the desired symbol in the list
under Symbols.

3. Modify the symbol’s characteristics.
You can click a row under Value and chooseg button to invoke a

separate editor for the symbol or expand the tree view of the symbol’s
characteristics and edit items directly.

4. Choose the OK button.

207

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

To Delete a Symbol from a Symbol Table

1.

2.

3.

4,

With atestplan loaded, choose View | Symbol Tablesin the menu bar.

When the Symbols Tables box appears, click the symbol to be removed
from the list under Symbols.

Choose the Delete Symbol button.

Choose the OK button.

Using External Symbol Tables

External symbol tables are user-defined and named symbol tables stored ina
file external to the testplan. Each testplan can be associated with one or more
external symbol tables, and each external symbol table can be associated
with one or more testplans.

To Create an External Symbol Table

1

2.

Choose File | New in the menu bar.

When prompted for which kind of document to create, choose Symbol
Table.

Choose the OK button.

Do the following for each symbol you wish to define in the external
symbol table:

a. Choose the Insert button.

b. Define the characteristics of the new symbal.
You can click arow under Value and choose the IZI button to invoke
a separate editor for the symbol or expand the tree view of the

symbol’s characteristics and edit items directly.

Choose File | Save As in the menu bar.

208

Note

6.

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

Specify the name of the file in which to store the external symbol table.

Although the name of the file and the name of the symbol table need not be
the same, naming them alike simplifies remembering their relationship later.

7.

Choose the Save button.

ToLink to an External Symbol Table

To make an external symbol table visible to atestplan, you must link or
associate it with the testplan. After you have linked an external symbol table
to atestplan, you can use its symbols the same way you use symbolsin
internal symbol tables.

1

2.

4.

5

Choose View | Symbol Tables in the menu bar.

In the Symbol Tables box, choose the Link to External Symbol Table
button.

When prompted, specify the name of the external symbol table to be
associated with the testplan.

Choose the Open button.

Choose the OK button.

To Removea Link to an External Symbol Table

1

2.

Choose View | Symbol Tablesin the menu bar.

In the Symbol Tables box, click the name of an external symbol tablein
the list near Tables.

Choose the Remove Link to Symbol Table button.

Choose the OK button.

209

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

Using Auditing

HP TestExec SL's auditing features let you document the history of software
revisions as you work with the software. You can describe changes to
testplans, tests, actions, and topology information. Shown below is a typical
dialog box in which you can record revision information for a testplan,
action, or switching topology.

Testplan Revizion Info E |

Current Wersion: IEIEl | ak. I
Created: |1 0/18/1996 14:17:54 Cancel |

Updated: I'I 241041336 5:51:42 Mew Versinn...l

Specification M I

Higtory:

-l

210

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

As shown below, the Document tab in the Test Editor window lets you
specify revision information for tests.

ETest Editor !EIE
Mame: INewTest‘l Wariant: INDrmaI _l
Surnmary: I

F'alametersl F'rocedurel Limnits I Options | Document I
r Descrphion:
B
=
r Revizion |nformation
Created: I
Last Modified : I
IUnder Development ;I

After you have entered revision information, you can view or print it the
same as you do other information associated with atestplan.

Some of the auditing features are customizable; see “Setting Up the Auditing
Features” in Chapter 6.

To Document Testplans, Actions & Switching Topology

1. While editing a testplan, action definition, or switching topology layer,
choose File | Revision Information in the menu bar.

2. Enter a description of the current revision of the testplan, action, or
switching topology.

Tip: Use the New Version button to create a new revision when editing a
testplan.

3. Choose the OK button.

211

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing
To Document Tests

1. Intheright pane of the Testplan Editor window, choose the
Documentation tab.

2. Inthe dataentry fields on the Documentation tab, enter a description of
the current revision of the test.

3. Click to theright of the drop-down list to specify the current status of the
test.

Note If you wish to customize the options that appear in this list, see “Setting Up
the Auditing Features” in Chapter 6.

4. Choose the Apply button to save the description.

Tip: If you change your mind, choose the Restore button to recall the
previous description.

To View or Print Auditing Infor mation
1. With a testplan loaded, choose View | Listing | Audit in the menu bar.

2. If you wish to print the information, choose File | Print in the menu bar
while viewing the listing.

212

System Administration

This chapter provides information about configuring and administrating
HP TestExec SL, which includes setting system security.

213

System Administration
System Setup

System Setup

Specifying the L ocation of the System Topology L ayer

If you wish to use HP TestExec SL's graphical features, such as the
Switching Path Editor, to control switching paths from tests, your test
system must have a system topology layer defined for it. The pathname of
the file containing the system layer is listed in[tii t chi ng] section of

HP TestExec SL’s initialization file, which is HP TestExec SL
home>\bin\tstexcsl.ini”, as shown below.

[Swi t chi ng]
System t opol ogy file.

; The entry contains the name of systemtopology file and/or path.
The default path is the current working directory.

Syst em Layer =$ROOT$\ bi n\ syst em ust

Use a text editor, such as WordPad in its text mode, to modify this path as
needed.

For an overview of controlling switching and switching topology, see
Chapter 3 in th&etting Sarted book. For detailed information, see
Chapter 4 in this book.

Specifying the Default Variant for a New Testplan

An entry in the [Process] section of theHR TestExec SL

home>\bin\tstexcsl.ini” initialization file lets you specify which testplan

variant is used as the default when you create a new testplan. The entry looks
like this:

Defaul t Vari ant =Nor mal

Use a text editor, such as WordPad in its text mode, to modify this entry as
needed.

214

System Administration
System Setup

Setting Up an Operator or Automation Interface

Overview

Your goal in setting up an operator interface is to have the operator interface
appear instead of the Test Executive environment used to develop testplans.
Automation interfaces are similar except that they also must automatically
log into HP TestExec SL and load and run atestplan.

The methods for achieving these goal s vary depending upon which language
was used to develop the operator/automation interface. Interfaces developed
inVisual C++ resideinaDLL that is called by HP TestExec SL, while
interfaces developed in Visual Basic are external programs that call

HP TestExec SL.

For information about creating an automation interface, see Chapter 1 in the
Customizing HP TestExec SL book.

Setting Up an Automation Interfaceto Start Automatically

Sarting an Automation Interface Created in Visual Basic

All you need to do to start an automation interface created in Visual Basicis
run its executable file. Code in the automation interface handles tasks like
logging in to HP TestExec SL and loading and running atestplan.

Sarting an Automation Interface Created in Visual C++

Starting an automation interface created in Visual C++ requires HP TestExec
SL to log in auser automatically and then load a custom user interface that
supports automation tasks. When setting up an automation interface, you
need to examine or edit entriesin the [Process] and [Components] sections
of the “<HP TestExec SL home>\bin\tstexcsl.ini” initialization file.

The [Process] section of the initialization file contains entries that look like
this:

Aut omat i on=Yes
Aut omati on User Name=<user nane>

SettingAut ormat i on=Yes causes HP TestExec SL to use an automated
login sequence. The user name specifiedfdronat i on User Name

215

System Administration
System Setup

will be used during the automated login sequence. This name must belong to
only one group of users, and it must not have a password associated with it.

The [Components] section of the file has an entry that follows this format:
<group nanme>=<automation DLL>

For gr oup nane, specify the group to which the user name specified for
Aut omat i on User Name belongs. For aut omat i on DLL, specify the
name of the DLL that contains the code for your automation interface.

Suppose a login named Aut omat i onUser had no password and was the
only member of agroup called Aut ormmat i on. The automation-related
entries for it might look like this:

[Process]

Aut omat i on=Yes

Aut omati on User Nane=Aut omati onUser
[Conponent]

Aut omat i on=$ROOT$\ bi n\ st doper. dl |

Use atext editor, such as WordPad in its text mode, to modify these entries
as needed.

For more information about specifying HP TestExec SL's security features,
see “Controlling System Security.”

Setting Up Automatic Printing of Failure Tickets

If you implement a failure ticket printing scheme, you can add the following
line to the [Process] section to have a failure ticket printed to the default
printer:

Auto Print Failure Report=Yes

Use a text editor, such as WordPad in its text mode, to modify this entry as
needed.

Specifying the Polling Interval for Hardware Handlers

If you are using a hardware handler to monitor the status of hardware, as
described under “Monitoring the Status of Hardware” in Chapter 2 of the
Customizing HP TestExec SL book, you may want to specify how frequently
HP TestExec SL calls thiadvi seMoni t or () function in hardware
handlers. By default, this function is called every 100 milliseconds. You can

216

Note

System Administration
System Setup

change the interval for polling by adding an entry named Moni t or Ti e
Sl i ce to file “<HP TestExec SL home>\tstexcsl.ini” and specifying a
different value irmicroseconds, as shown below:

[Process]
Monitor Tinme Slice=500000

Use a text editor, such as WordPad in its text mode, to maodify this value as
needed.

The value oMbni tor Ti ne Sl i ce affects the performance of your test
system. The lower the value—i.e., the more frequently HP TestExec SL calls
theAdvi seMoni t or () function in hardware handlers—the more time

your system spends polling instead of testing.

Setting Up the Auditing Features

If desired, you can modify the behavior of some aspects of HP TestExec
SL's auditing features.

For general information about auditing features, see the auditing topics in
Chapter 5.

Controlling the Appearance of the Status L ist

Entries in the “€HP TestExec S home>\bin\tstexcsl.ini” file determine what
appears in the drop-down status list on the Document tab in the Test Editor
window. The default entries are:

[Cust oni zed Devel opnent St at us]
Stat usl=Definition

St at us2=Under Devel opnent

St at us3=Under Testi ng

St at us4=Br oken

St at us5=Rel eased

You can change the status list's contents by using a text editor, such as
WordPad in its text mode, to modify these entries. For example, you can
rename existing items and add or delete items to change the length of the list.

217

System Administration
System Setup

Controlling the Oper ation of the Revision Editor

If desired, you can customize some features of the New Version box (shown
below) that appears when you use HP TestExec SL's auditing features to
create a new version of a testplan.

Mew Verzion H

Werzion Mumber: I

Authar: W Created [12/18/1995 165421

Spec. Number I— Last Update: |2f3x"| 997 11:54:28
Development Status I— IJzer Field 2 I
UserFielda[| User Field 4

You can:

» Optionally prevent system operators from modifying the testplan’s
revision history.

< Optionally have the version number incremented automatically each time
you create a new revision.

« Customize several labels associated with descriptive information entered
for revisions of the testplan.

Entries in the “©HP TestExec S home>\bin\tstexcsl.ini” file determine the
behavior of the New Version box. The default entries are:

[Cust onmi zed Revi sion Options]

Al'l ow Operator Edit=TRUE

Automatically Increnent Revision Nunber=TRUE
Audi t Label =Spec. Nunber

User1l Label =Devel opnent St at us

User2 Label =User Field 2

User 3 Label =User Field 3

User4 Label =User Field 4

218

System Administration
System Setup

You can use atext editor, such as WordPad in its text mode, to modify these

entries, as described below.

This entry. . .
Allow Operator Edit

Automatically Increment
Revision Number

Audit Label

Userl-4 Label

Does this

When set to FALSE, prevents operators from
modifying the revision history of a testplan.

When set to TRUE, automatically increments
the Version number each time new revision
information is entered.

A label that will be associated with each new
revision that is created.

Text associated with user-defined labels. This
text appears in the revision history for each
new version that is created.

When you enter text in the fields adjacent to the Audit Label and Userl-4
Label in the New Version box, the labels and the contents of the fields
appear in therevision history information displayed in the Testplan Revision
Information box, as shown below. By customizing the labels, you can make
them meaningful for your testing environment.

Testplan Revizion Information E

Current Yersion: IU.'I (] 4 |
I'I 2M18/1936 16:54:21
|2.f"| 941997 843717
Spec. Mumber [12345

Created:
Updated:

Hiztony:

Cancel |

W erzion: 0.1

Operatar; administratar

pdated: 2/3/1997 11:54:28

Spec. Number: 12345

Development Status: My text far Development Status

Uszer Field 2; My text for User Field 2

Idzer Field 3: My Text for Uzer Field 3

Idzer Field 4: by text for Lzer Figld 4

My comments for wersion 0.1 LI

219

System Administration
Directories and Files

Directories and Files

This section lists standard directories, files, and file extensions. It aso offers
suggestions for locating libraries and managing temporary files.
Sandard Directories

HP TestExec SL has the following standard directories and files:

HP TestExec SL The default home directory for HP TestExec SL'’s files (unless you
chose a different location when installing HP TestExec SL). This
directory contains as subdirectories all of the standard HP TestExec
SL directories listed below.

actions Contains the definitions for some predefined actions.

bin Contains the HP TestExec SL program and standard DLLs. Also
contains the standard initialization (“*.ini") files used by HP TestExec
SL.

doc Can contain supplemental documentation.

DefaultConfiguration Contains default copies of various files, such as initialization files.

include Contains C header files needed by Visual C++ to build user-defined
actions.

lib Contains libraries needed by Visual C++ to build user-defined
actions.

opui Contains source code for the sample operator interface created in
Visual C++

samples Contains subdirectories that contain examples provided on an as-is
basis.

220

System Administration
Directories and Files

Sandard File Extensions

Various aspects of HP TestExec SL have associated files that are denoted by
specific extensions. As noted below, some of these are registered file types
that you can open simply by clicking them in the Windows Explorer.

Testplans

Test libraries

Switching
topology files

Actions

External symbol
tables

Initialization files

.tpa (For example, “testplanl.tpa”) Registered to
open with HP TestExec SL.

.utd (For example, “arb2dmm.utd”.)

.ust (For example, “system.ust”, “myfix.ust”,
“myuut.ust”) Registered to open with HP TestExec
SL.

HP TestExec SL supports three topology layers:
system (one per test system), fixture (one per fixture
type), and UUT (one per UUT type). The system “ust”
file loads when HP TestExec SL starts, based on a
path in the “tstexcsl.ini” file. The fixture and UUT “.ust”
files (as specified under View | Switching Topology
Files) load with each testplan. The system “.ust” file
reloads at this time.

.umd (For example, “measv.umd”) Registered to
open with HP TestExec SL.

Actions consist of a “.umd” definition file and an
associated file that contains the action code. The file
that contains action code can contain code for more
than one action.

.sym (For example, “MyTestplan.sym”) Registered to
open with HP TestExec SL if no previously installed
application used the “.sym” type.

Each testplan can have one or more external symbol
tables associated with it.

.ini (For example, “tstexcsl.ini".)

See “Initialization Files” below.

221

System Administration
Directories and Files

Initialization Files

HP TestExec SL has the following initialization (“*.ini") files:

tstexcsl.ini

*def.ini

Contains paths to other files required by HP TestExec SL
and values for various system parameters. This file, which
is located in the “<HP TestExec SL home>\bin" directory,
contains comments that describe its contents.

HP TestExec SL finds this file by locating its path in file
“win.ini” (located in the “<Windows home>" directory) under
the heading “[HP TestExec SL]". If “win.ini” does not have a
specific entry for “tstexcsl.ini”, HP TestExec SL looks in the
directory specified by the “windir” environment variable.

Various files that define datalogging formats. The
Datalogging Configuration Editor provides a graphical
interface for manipulating these files without your having to
understand their contents.

222

System Administration
Directories and Files

Recommended L ocationsfor Files

C actions
(during
development)

C actions
(when ready for
general use)

Test libraries

Testplans

External symbol
tables

Switching
Topology files

utalib.vee

During development, keep action definitions (“*.umd”)
and simple testplans to exercise them (such as
“tryit.tpa”) in the same directory as the Visual C++
project used to create the action DLL
(“<action_name>.dlIl").

Action definitions (“*.umd” files) belong in directories
with other logically related actions. The action DLL
(“<action_name>.dll") belongs in a directory specified
in the PATH environment variable. See “Using Test &
Action Libraries” in Chapter 5.

Standard test template (“*.utd”) files. You can choose
your own location and organization for these files.
See “Using Test & Action Libraries” in Chapter 5.

Standard testplan (“*.tpa”) files. You can choose your
own location and organization for these files. A good
practice is to place related testplans in the same
directory.

Files containing external symbol tables (“*.sym”)
belong in the directory containing the testplan with
which they are associated.

Because the fixture and UUT topology layers
(“uut.ust” and “fixture.ust”) are also loaded with the
testplan, you should keep these files in the same
directory as the testplan.

The system topology file (“system.ust”) can be
located anywhere. HP TestExec SL finds this file via a
path specified in file “<HP TestExec SL
home>\tstexcsl.ini”.

For HP VEE users. Provides HP VEE functions for
passing parameters back and forth between

HP TestExec SL and HP VEE. You may wish to move
this library from the “<HP TestExec SL home>\lib”
directory to a directory of your choice (typically the
“lib” subdirectory of the “vee” installation directory).

223

System Administration
Directories and Files

uta.llb For National Instruments LabVIEW users. Provides
functions for passing parameters back and forth
between HP TestExec SL and National Instruments
LabVIEW. You may wish to move this library from the
“<HP TestExec SL home>\lib” directory to a
subdirectory called “uta.lib” in the directory where
National Instruments LabVIEW is installed.

User files, DLLs You should create your own directory structure for
& directories any actions, DLLs, testplans, test libraries, and so on.
See the example below.

Note: If you place your own actions, DLLs, and such
in the directories created by HP TestExec SL, they
may be overwritten when you install new versions of
the software.

The following exampleillustrates a possible directory structure for

customized HP TestExec SL files. Note that the “bin” directory must appear
in the list of search paths for DLLs so the system can find the DLL files
when executing them; see “Managing DLLs” for more information about
specifying the search path for DLLs.

custom
bi n\ (customized DLLS)
eecl.dl |
abs4. dl |
aut oui . dl |
acti ons\
eecl\
i nj pul . und
abs4\
serialin.und
proj ect s\ (for action sources that you create)
t est pl an\
t est s\

Managing DLLs

While DLLs make possible much of the technology found in
HP TestExec SL, they also can complicate the initial development of action

224

System Administration
Directories and Files

code, particularly during the debugging phase. For example, it is easy to

attempt to execute—with adverse results—a DLL that is not matched with a
particular version of the HP TestExec SL software. It also is easy to become
confused about exactly which DLL has been loaded when there are multiple
copies of that DLL on a system, as frequently is the case when debugging.

How HP TestExec SL Searchesfor DLLs

HP TestExec SL has a specific way of looking for DLLs requested by an
application that is running. It searches for them in the order listed below.

1. Use whichever DLL already is in memory.

2. If the name of the DLL is preceded by a fully qualified path, use the full
pathname for the search.

Example of a full pathname: tkive>:\<dirname>\...\<filename.dl>"

3. If the name of the DLL is simplyfkename> or <filename.dll>, search in
this order:

a. Search the list of paths specified for Dynamic Link Libraries in the
Search Paths tab in the Options box.

S |

E:-:eu:utiu:unl Hepu:urtingl Profiler - Search Paths |

Search paths for ID_I,Inamiu: Link. Libraries ;I

Testplan specific:

c:hProgram FileshHP TestEec 5L\zamplesibin

Edit...

Delete

L | | _PI bove Up

|
| Ddee |
[Mool |
[[Move bgwe |

[W

System-wide;

C:\Program Files\HP TestExec SL\bin

225

System Administration
Directories and Files

Testplan-specific paths are searched first, followed by System-wide
paths. Both are searched in the order in which the search paths appear
in their respective lists.

For more information about how to specify these search paths, see
“Specifying the Search Path for Libraries” in Chapter 5.

b. Search the directory that contains the “.exe” file that is executing.

If the pathname of the DLL includes a relative path—e.g.,
“\<filename.ext>" or “<dir>\<filename.ext>—the name of the DLL is
appended to the name of the directory containing the “.exe” file and
that becomes the pathname for the search. For example, if the
pathname of the DLL is “test\test.dll” and the “.exe” directory is
“c:\tstexcsl\bin”, the pathname for the search is
“c:\tstexcsl\bin\test\test.dll”. Or, if the pathname of the DLL is
“\test.dll” and the “.exe” directory is “c:\tstexcsl\bin”, the pathname
for the search is “c:\test.dll”.

Situations That Can Cause Problems With DLLs

If you use Visual C++ for debugging, it searches the current working
directory—i.e., the directory where the project is and the latest DLL is
stored—for the correct DLL to load. If the application—HP TestExec SL, in
this case—changes the current working directory before that DLL can be
loaded, then either the wrong DLL will be loaded (if one exists somewhere
besides the project directory) or a “DLL not found” error will occur.

Because HP TestExec SL lets you specify a new working directory when
loading a testplan, and DLLs containing action code are not loaded until the
testplan is, action DLLs are susceptible to this problem. A temporary
workaround is to create a new testplan first, using just the action desired so
that the DLL gets loaded, and then loading the real testplan to check the
action being debugged.

DLLs are not always unloaded from memory, especially if HP TestExec SL
terminates abnormally. Thus, if HP TestExec SL is run again the DLL in
memory will be used instead of the expected one. This can cause even more
problems if the version in memory is out of date with the rest of the system.

226

System Administration
Directories and Files

DLLs must be consistent and compatible with the version of

HP TestExec SL that calls them. The best way to ensure thisisto build the

DLL using the “include” and “lib” files for that version of HP TestExec SL

to be sure of compatibility. It is also important to make sure the expected
DLL and the expected HP TestExec SL software really got run. Examples of
situations known to cause such problems include:

Building an action DLL with one version of the HP TestExec SL
software and executing it with another. Crashes can result.

To prevent this, be sure that the Visual C++ “directories” option points to
the correct version.

Running an action DLL from C++ debug with the wrong version.

To prevent this, be sure that the Visual C++ “debug” option points to the
right version.

Running an action DLL with a HP TestExec SL version it was not built
for. Subtle differences can cause unexpected results, including crashes.

To prevent this, be sure that the action DLL is being run by the correct
version of HP TestExec SL.

Running an action DLL that is already loaded. While this may be what
you want, if you have created a new DLL you must remove the old one
before the new will load. If the new DLL fails to behave as expected,
such as not stopping at breakpoints, this may be the cause.

Symptoms Associated with L oading the Wrong DL L

Among the symptoms you may see if the wrong DLL (or wrong version of
HP TestExec SL) has been loaded are:

Unexplained crashes of DLLs that previously worked.

Breakpoints set in a new DLL are never reached even though you know it
has to be executing that code.

227

Note

System Administration
Directories and Files

« A new entry point into an action is not found even though you just added
it to the DLL.

» The action does not do functions you just added to the DLL.

Minimizing the Problemswith DLLs

Do the following to minimize the problems caused by DLLSs:

« When switching to a new version of HP TestExec SL, make sure the
search path for DLLs includes it.

» Do not create too many copies of a DLL. The fewer the better.

» Before building a DLL for use in an action, be sure the C++ “directories”
entry has pointers to the Version's files for Libraries and for Include.

« Before starting a debug run of HP TestExec SL from Visual C++, be sure
the “debug” option points to the correct version of “tstexcsl.exe”.

You can use theoadLi brary() function in the Visual C++ environment
to load specific library files. See the Visual C++ documentation.

Managing Temporary Files

The most significant temporary files created by HP TestExec SL are the
datalogging files, which by default are stored in directory “\logdir” but can
be specified in the datalogging options for each testplan (Options | Testplan
Options | Reporting). Ideally, the application software that uses the
datalogging files automatically cleans up the temporary datalogging files. If
no such application exists or if it cannot automatically delete files, you must
manually delete datalogging files when you no longer need them.

Windows and Visual C++ sometimes create temporary (.tmp) files in a
“temp” directory. These files can also consume disk space, and you may
need to delete them occasionally.

228

System Administration
Controlling System Security

Controlling System Security

This section tells you how to modify HP TestExec SL's security settings.

The security system controls access to program functions, based on “users”
and “groups.” Users have log-in names and passwords and belong to groups.
Access to program functions is based on the group to which a user belongs.
Users that belong to the same group have the same access privileges to the
system.

Group privileges are based on access to resources. Resources are generally
tools, such as “Security” for using the security system or “SymVal” for
working with symbol tables.

After your HP TestExec SL system has been installed, we recommend that
you designate one person as the system administrator. The system
administrator should change the password for the system user, and,
optionally, add passwords to the operator, developer, and troubleshooter user
groups.

Using the Default Security Settings

HP TestExec SL's default security settings give you security protection
adequate for many work environments. In the default settings, user groups
and user names are identical and passwords are not assigned to any group
except the “system” group.

229

System Administration
Controlling System Security

User Groups

The default user groups are as follows:

Operator

Supervisor

Developer

Administrator

An operator of a test system. Operators can select and
run predefined testplans via an operator interface
personality for the Test Executive, but they cannot
access the test development personality.

A supervisor of test operators.

A developer of testplans, actions, and switching topology
layers. A Developer can write and save testplans, action
definitions, and switching topology layers, and has full
access to the Test Executive’s test development
environment except for system administration functions.

This group has full access to all functions and is usually
assigned only to the system administrator.

System Resour ces

The system resources to which user groups have access are as follows:

Security
Security Access

SymVal

Controls use of the security system.
Controls ability to modify the security system.

Controls use of values in symbol tables and
modification of parameter values.

Group Access Privileges

The following table lists the specific access privileges to system resources
for each default user group. The column on the left side lists the system
resource in bold type and the access to that resource in plain type.

230

System Administration
Controlling System Security

System Resource Group
and Access

Operator | Supervisor Developer Administrator

Security
Read X X
Write
Edit User
Edit Group
New User
New Group
Set Access

X X X X X X X

Security Access
Modify Resources

x

SymVal
Read X X
Write
Print X
Secure
Print Value
Edit Value X

X X X X X X

Revision
Edit
Add X

x

Customizing Security Settings

You can change security settings, such as:

« Assigning or changing passwords.

« Adding, deleting, or editing user and group privileges.
» Modifying access privileges for groups.

To Change a Password

1. Choose File | Security | Change Password in the menu bar.

231

System Administration

Controlling System Security

2. Typethe current password in the Old Password field.

3. Typethe new password in the New Password field.

4. Retype the new password in the Confirm Password field.

5. Choose the OK button.

To Add a New User

1. Choose File | Security | Edit Security in the menu bar.

2. Click the New User button.

3. Specify the information for the new user.

A user’s information includes:

User Name

Full Name

Description

Password

Confirm Password

User Cannot
Change Password

The name the user must type when logging in.

The user’s full name (which may be different from
User Name).

Information about the user.

The password that the user must type when
logging in.

A verification of the password.

Click this box to prevent users from changing
their own passwords.

232

Note

4,

System Administration
Controlling System Security

User Inactive Click this box to deactivate the user’s access to
the software but retain the account information for
future use.

Groups: Member Click the Add or Remove buttons as needed to

of/Not Member of specify the user's membership in a group. For
example, click the name of a group the user is not
a member of, and then click the Add button to add
the user to that group.

Note: New users are not automatically assigned
to any group.

Choose the OK button.

To Modify an Existing User

1.

2.

Choose File | Security | Edit Security in the menu bar.
Click auser in the list under User Name.

Choose the Edit button.

Modify the information associated with a user.

See “Adding a New User” above for a description of user information.

To Delete an Existing User

1.

2.

3.

Choose File | Security | Edit Security in the menu bar.
Click a user in the list under User Name.

Choose the Delete button.

To Modify a User’s Privileges

Users derive their privileges from the group(s) in which they are members.

233

System Administration
Controlling System Security

1. Choose File | Security | Edit Security in the menu bar.

2. Modify the privileges of the group(s) to which the user bel ongs or modify
the user’s membership in the groups.

To Add a New Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Choose the New Group button.

3. Inthe Group Namefield, type a name for the new group.

4. Inthe Description field, type a brief description of the new group.

5. Click the Add or Remove buttons as needed to specify which users
belong to the new group. For example, click the name of a non-member,
and then click the Add button to add that person to the group.

6. Choose the OK button.

To Modify an Existing Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Select an existing group.

3. Choose the Edit button.

4. Make changes, as hecessary.

234

System Administration
Adding Custom Tools to HP TestExec SL

Adding Custom Toolsto HP TestExec SL

For an overview of custom tools, see “Using Custom Tools to Enhance the
Environment“ in Chapter 3 of th@etting Sarted book.

Syntax for Adding Custom Tools

When you define custom tools, items that invoke them appear in a menu
named Tools that otherwise does not appear in HP TestExec SL's menu bar.

The syntax for each item you add to the Tools menu is:
<Tooln>=<Title>;<Type>;<Fpecification>

where

This item... Is...

Tooln A name and unique numeric identifier (n) for a tool. The
name of the tool must be “Tool” in the first level of the
menu structure, and the name of a [section] in submenus.
The numeric identifier’s value can be 0 through however
many items appear at any given level in the Tools menu.
The numbers must be in ascending order.

Title The title of an item as you want it to appear in the Tools
menu. Titleis ignored if Type is SEPARATOR.

Type The type of item, which can be:

EXE Your tool is an executable program;

i.e., its extension is “.exe”, “.com”, or
“ bat”.

DLL Your tool is a function in a DLL.

MENU Creates a new submenu in the Tools
menu.

1. Notethe use of semicolons (;) as delimiters between someitems. If you omit
items, be sure to leave the semicolons as placeholders.

235

System Administration

Adding Custom Tools to HP TestExec SL

SEPARATOR

Creates a separator bar between
items in the Tools menu

Specification A field whose contents vary with the Type of item.

If Typeis...

Then...

EXE

DLL

MENU

SEPARATOR

Use this field to specify the pathname
of the executable file to run; e.g.
“c:\winnt\notepad.exe” or
“c:\temp\myfile.bat”.

Use this field to specify the pathname
of the DLL, followed by a space and
the name of the function to run in the
DLL; e.g., “c:\MyDLL.dIl MyFunction”.
If you omit the function’s name, it
defaults to “execute”.

Use this field to specify the name of a
new [section] that defines a submenu
that contains a numbered list of
custom tools.

Leave this field blank.

A simple example that runs WordPad might look like this:

[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\ accessori es\wordpad. exe

A slightly more complex example that creates multiple tools might look like

this:
[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\accessori es\ wordpad. exe
Tool 1=Copy Testplan Files to Production; EXE; c:\ MyFi | es\ CopyFi | es. bat

236

System Administration
Adding Custom Tools to HP TestExec SL

Finally, an example that creates multiple tools, contains a separator bar, and
includes tools in a submenu might look like this:

[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\accessori es\wordpad. exe
Tool 1=Run Custom Tool in DLL;DLL;c:\MFiles\MDLL.dll MFunction
Tool 2=; SEPARATOR,;

Tool 3=Fil e Copying Utilities; MENU; CopyFi | esSubnenu

[CopyFi | esSubnenu]

CopyFi | esSubnenu0=Copy Files to Production; EXE; c:\ CopyToProducti on. bat
CopyFi | esSubnenul=Copy Files to Archive; EXE; c:\ CopyToAr chi ve. bat

To Add Entriesto the Tools Menu

1. Useatext editor, such as WordPad in its text mode, to open file
“tstexcsl.ini” in the “bin” directory beneath HP TestExec SL's home
directory (which by default is “\Program Files\HP TestExec SL").

2. Locate the [Tools] section in the file.

3. Add entries that conform to the syntax shown above.

4. Save the file and exit the editor.

5. Restart HP TestExec SL so it will reread the initialization file.

237

Working with VXIplug&play Drivers

This chapter provides information about using HP TestExec SL with standard
V XIplug& play drivers for instruments.

239

Note

Working with VXIplug&play Drivers
What is VXIplug&play?

What isVXIplug&play?

V Xlplug& play is an industry standard that |ets you program standalone and
V Xlbus instruments using various programming languages, such as

HP VEE, Visual Basic, and Visual C++. VXIplug& play drivers have a
consistent architecture, and are developed and used in a consistent fashion.
They let vendors of instruments develop drivers for their own instruments,
and ensure that those drivers are interoperabl e with drivers provided by other
vendors.

V Xlplug& play instrument drivers are conceptually one layer above
traditional instrument programming, which requiresindividual, low-level
I/O statements in an application program that controls instruments. Instead,
V XlIplug& play driverslet you use higher-level languagesto call predefined
functions with nameslikei ni t (initialize) and r eset whose functionaity
may include numerous low-level 1/0 calls. Because these functions are

written by those who know the instruments best—the instrument vendors—

they are optimized to use the unigue capabitities of each instrument.

Your main source of information about ViXuig& play is the documentation

provided with your instrument drivers. For example, you can look there to

find information about the “include” files needed when using programs
written in the C language to control instruments via M¥d& play drivers.

240

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXlplug&play Work Together?

How Do HP TestExec SL & VXIplug&play Work
Together?

V Xlplug& play instrument drivers are compatible with HP TestExec SL's
strategy for hardware handlers. (For an overview of hardware handlers, see
Chapter 3 in th&etting Sarted book.) For example, both VHKlug& play

drivers and hardware handlers include functions to initialize, reset, and close
hardware modules such as instruments.

Besides a small set of function calls shared bypldg& play drivers and

HP TestExec SL's hardware handlers, each driver strategy has its own
unique aspects. VXlug& play drivers include functions that are specific to
particular types of instruments. For example, although the drivers for a
DMM and a frequency counter both provide functions to initialize and reset
them, one instrument requires different functions to control it than does the
other because the functionality of the instruments is dissimilar. In a similar
fashion, HP TestExec SL's hardware handlers may include additional
functions that are specifically used to control switching hardware—such as
Set Posi ti on() andGet Posi ti on() —via the Switching Path Editor.

When HP TestExec SL runs, it automatically calls as needed the following
functions in hardware handlers or \pXlig& play drivers associated with
hardware modules via HP TestExec SL's Switching Topology Editor:

« Functions used to initialize hardware prior to using it.
In hardware handlers, this is thai t () function (which also resets the
module when called). In VXlug&play drivers, these are functions
whose names include “init”; e.dp34401_init.

» Functions used to reset hardware to a known state.
In hardware handlers, this is tReset () function. In VXIplug& play
drivers, these are functions whose names include “reset”; e.g.,

hp34401_reset.

* Functions used to close—i.e., terminate communication with—hardware.

241

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXlplug&play Work Together?

In hardware handlers, thisisthe Cl ose() function. In VXIplug& play
drivers, these are functions whose names include “close”; e.g.,
hp34401 cl ose.

Besides automatically initializing, resetting, and closing instruments via
VXI plug& play drivers, HP TestExec SL lets you interactively control
instruments from action code that you write. The method for doing this is
described next.

242

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

How Do Actions Control Instrumentsvia
VXIplug&play?

HP TestExec SL provides API functions used to communicate with
instruments from actions via V X1plug& play drivers. Shown below isan
example of how an action written in C can communicate with an instrument
viaaVXlplug&play driver.

voi d UTADLL ProgranPower Supply (HUTAPB hPar anet er Bl ock)

{

/1 Action routine that prograns an HP 66312 power supply.

/'l Exanpl e assunmes that parameter block contains three paraneters:
/1 Vol tage - type Real 64

/1 Current - type Real 64

/1 Power Supply - type Inst

/'l Assign mscellaneous vari abl es
HUTAREAL64 hDat a;

Vi St at us Error Codes;

HUTAI NST hl nstrunent;

/1l Get value of voltage from paraneter bl ock
hDat a = U aPbGet Real 64(hPar anet er Bl ock, "Vol tage");
doubl e dVolt = Ut aReal 64Get Val ue(hbDat a) ;

/1l Get value of current from paraneter bl ock
hDat a = U aPbGet Real 64(hPar anet er Bl ock, "Current");
doubl e dCurr = Ut aReal 64CGet Val ue(hbDat a) ;

/1l Get the ViSession identifier fromthe paranmeter bl ock
hl nstrunent = Ut aPbGet | nst (hParanet er Bl ock, "Power Supply");
I ong | Vi Session = Ut al nst GetVi Sessi on(hl nstrunent);

/1l Set the voltage & current, and turn on the output
Error Codes = hp66312 voltCurrQutp (I Vi Session, dVolt, dCurr);

...(optional code that checks ErrorCodes for power supply errors)

return;

}

243

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

In the example above, acall to Ut aPbGet | nst () returnsthe handleto a

data container that contains data for an instrument—in this case, a power
supply—from the action’s parameter block. Given that handle, a call to

Ut al nst Get Vi Sessi on() returns a unique identifier for the
instrument’s ViSession. Once the identifier of the ViSession is known, the
example uses a standard \BKlg&play call, hp66312_ vol t Curr Qut p,

to program the power supply to voltage and current limit settings passed in
as parameters—"Voltage” and “Current’—in the action’s parameter block.

The same example is shown below rewritten in C++ to use data types that
HP TestExec SL implements as C++ classes. Although the syntax differs
somewhat from the C example, the concepts are similar.

voi d UTADLL ProgranPower Supply (HUTAPB hPar amet er Bl ock)

{

/1 Action routine that prograns an HP 66312 power supply.
/'l Exanpl e assunmes that parameter block contains three paraneters:
/1 Vol tage - type Real 64

/1 Cur r ent

- type Real 64

/1 Power Supply - type Inst

/'l Assign mscellaneous variables used in this function
Vi St at us Error Codes;
| ong | Vi Sessi on;

/1 Assign variables fromparaneters used by this action routine
| Ut al nst hPower Supply (hParaneterBl ock, "Power Supply");

| Ut aReal 64
| Ut aReal 64

/1l Get the
| Vi Sessi on

/1l Set the
Er r or Codes

... (optional

return;

}

Vol t (hPar anet er Bl ock, "Vol tage");
Curr (hParaneterBl ock, "Current");

Vi Session identifier fromthe instrument handl e

Ut al nst Get Vi Sessi on (hPower Suppl y) ;

voltage & current, and turn on the output

hp66312 voltCurrQutp (IVi Session, Volt, Curr);

code that checks ErrorCodes for power supply errors)

244

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

Programming other instruments from actions viaV X1plug&play driversis
similar. Once you have obtained the identifier of a ViSession with the

instrument, you can call functionsin the VXIplug& play driver.

For more information about creating C actions, see “Working with C
Actions” in Chapter 3 of this book.

245

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

To Control a VXIplug&play Instrument from an
Action

Configuring HP TestExec SL to Use VXl plug& play
| nstruments

Before an action can control instruments viaV X1plug& play, you must make
HP TestExec SL aware of those instruments, as described bel ow.

1. If the necessary /O libraries and V XIplugé& play drivers for instruments
are not already installed, install and configure them as described in their
documentation.

2. Use HP TestExec SL’s Switching Topology Editor to add to the test
system’s topology a module for each instrument that uses a
VXI plug& play driver, as shown below. Typically, you will do this in the
system layer of topology; i.e., in file “system.ust”.

=25 system.ust !E m
CAliases _
CIWires Name: [PawverS upplyt [Disable
P=Modules Descrintion:
mPowerSupplyl BEEIRUON: M adule for HF BE3x2 poEr sUpRlY
Prefix Ihp55332

Library: IE:'\‘-HXI PHPwwinM T4bindhpEE3x2_32.dIl Browse... |

Parameter Block:

||nstrument Descriptor GFIBO:A Edi.. I

246

Working with VXIplug&play Drivers
To Control a VXIplugé&play Instrument from an Action

Do the following when associating an instrument that uses a
V Xlplug& play driver with a module:

For the Prefix, enter the name of the instrument as it appears in calls
to the driver; e.g., calls to HP 663x2-series power supplies begin with
“hp663x2" (as in “hp663x2_init") so that is what you should enter.

« For the Library entry, specify the name of the DLL in which the
VXI plug& play driver for the instrument resides.

« Press the Add button to load the parameter block.

» Use the value of the Instrument Descriptor in the parameter block to
define a unique instance of the instrument. For example, if your test
system has two HP 663x2-series power supplies, you might give the
first a Name of “PowerSupplyl” at address “GPIB0::5” and add a
second module named “PowerSupply2” at some other 1/0O address.

« Press the Update button to save your changes.

For more information about using the Switching Topology Editor, see
Chapter 4 in this book.

Creating the Action

Once HP TestExec SL is aware of instruments in your test system controlled
via VXIplug&play, you can create actions that control them. Actions that
control instruments via VXflug& play are similar to other kinds of actions
except that when using the Action Definition Editor to define the action, you
must add to the parameter block a parameter whose type is “Instrument” for
the instrument you wish to control. The example below shows this parameter

247

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

as well as parameters for setting the voltage and maximum current output
from a power supply.

E™ ProgramPowerSupply umd - Action Definition Editor - DLL Style !Elm

Action Degcription;

Action Mame: IF'rngramF'DwerSuppIy

Action that programs a power zupply bo d
Author: IHP a zpecified voltage & curnent

Library M arme: |F'ru:ugramF'0werSu|:u|:uI_l,l.dll LI

I adds | FOUce

Master: [ade

= |
arbl [ialete
autozero
counter j

r Kemwords

r Floutines
0 Setup/Cleanup 1% Execute

Sehup: I

Executs: I PragramPowerSupplyE

LClearup: I

—Action Parameters

The current rezult is: |<ND RESULT:> vl

Marne Walue Data Type | Dezcription

[G, | PowerSuppl |Instrument | wihich instrument
] valtage 5.0 Real Default voltage
[3:0] Cumrent 01 Real Diefaulk cument

Do the following to add a parameter for the instrument:
1. Inthe Action Definition Editor, choose the Add button.

2. When the row containing a new parameter appears, set the Data Type to
“Instrument”.

3. Enter a Name and Description for the parameter.

248

Working with VXIplug&play Drivers
To Control a VXIplugé&play Instrument from an Action

4. Click under Value and choose the desired instrument from the drop-down
list that appears there, as shown below.

Action Parameters
The current rezult iz: |<NEI RESULT > j

Marme | Data Tupe | Description

PowerSuppli vII Ingtrument | hich power supply

Now you must write the code that implements the action using the concepts
described earlier under “How Do Actions Control Instruments via
VXI plug& play?”

For more information about using the Action Definition Editor to define
actions, see “To Define an Action” and “Using Parameters with Actions” in
Chapter 3 in this book.

Using the Action in a Test

As shown below, using an action that programs an instrument via a
VXI plug& play driver is similar to using other kinds of actions in tests. The

249

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

only thing different is that this action’s parameter list includes a parameter
that identifies which instrument is being controlled.

Test Mame: ITESH

Surnmary:

IF'ru:ugram power supply #1 to specified values

Test Parameters | Actions | Limitz I Dptiu:unsl Du:u:umentatiu:unl

Actiong [hgert... |
armPowerSuppl,

~ Dezcrphion of "ProgramPowers upply''

Action that programs a power supply bo ;I
a gpecified voltage & current

LI Edit Symbals...

Parameters for "ProgramPowerSupply"

M ame: " alue

% Fisesimad | PowerSupplyl
Vil 5.0
Eiareent 0.1

For more information about using actions in tests, see “Adding Actions to a
Test/Test Group“ in Chapter 2 of this book.

250

Working with VXIplug&play Drivers
Beyond VXIplug&play

Beyond V XIplug& play

A conceptual diagram of the layering of hardware and software when using
HP TestExec SL with hardware handlersis shown below.

HP TestExec SL —> Hardware —> VISA /O —p| Instrument
Handler Library

The model when using HP TestExec SL with V XIplug& play instruments
looks likethis:

HP TestExec SL | VXIplug&play > VISAT/O p | Inst t
Driver Library fistrumen

Recall that hardware handlers and V XIplug& play drivers are compatible,

but that their specific implementation—i.e., features—can vary considerably
from one handler or driver to the next. For example, pfdd& play drivers
contain functions whose implementations are specific to a particular
instrument. Although you trigger both a frequency counter and a voltmeter
to take a reading, each type of instrument performs a different function and
requires different commands to trigger it. Similarly, you might program each
to a specific range prior to triggering it, but the details of the commands
required to change ranges would be different for a counter and a voltmeter.

As with VXIplug&play drivers, hardware handlers provide functionality that
is unigue to them. For example, hardware handlers let you send status
messages to HP TestExec SL's Watch window during debugging (with the
Decl ar eSt at us() function). Also, they let you monitor the status of
tracing (with theAdvi seTr ace() function) and modify the hardware
handler’s behavior “on the fly” as appropriate for greater speed.

Suppose you could combine the functionality of hardware handlers and
VXI plug& play drivers. Ideally, the combination would provide
instrument-specific features needed to control instruments plus the enhanced

251

Working with VXIplug&play Drivers
Beyond VXIplug&play

interaction with HP TestExec SL's features possible via hardware handlers.
The conceptual diagram below shows how this is possilheut modifying
the VXIplug&play driver.

HP TestExec SL

—p | Hardware || VXIPlug&play | o | VISATO | g 1\ 0 ont

Enhanced

Handler Driver Library

If desired, you can create an enhanced hardware handler that communicates
with or “handles” the VXplug& play driver. When HP TestExec SL calls
instrument-specific functions that reside in the Y¥g& play driver, you

have the option of passing them through the hardware handler unmodified or
enhancing their behavior.

For an example of an enhanced hardware handler that adds status
information to a VXplug& play driver, search online help for “example,
sample code for enhancing a VXIplugé&play driver.” Comments in the
example describe how to use the Switching Topology Editor to associate
handlers/drivers with modules when using this strategy.

For more information about the features of hardware handlers, see “About
Hardware Handlers" in Chapter 3 of tBetting Sarted book. For more
information about creating hardware handlers, see Chapter 2 in the
Customizing HP TestExec SL book.

252

Using Sring For matting

This chapter provides information about how you can use HP TestExec SL to
create strings that contain replaceable parameters whose values are updated
when the string is read from or written to.

253

Using String Formatting
What is a Formatted String?

What isa Formatted Sring?

HP TestExec SL lets you create or modify strings, apply formatting to
strings, and have the formats stored with the strings for subsequent use. As
shown below, a formatted string consists of one or more fixed parts that you
specify plus one or more replaceable parameters or placeholders for which
actual values are substituted when reading or writing the string.

Formatted String |=| Fixed Parts | 4| Replaceable Parameters

Refer the the example bel ow.
The serial nunber is %System Serial Nunmber %

The string has afixed part and areplaceable part. The fixed part, which you
specify as a standard string, is “The serial number is”. The replaceable part,
whose actual value will be determined when the string is used, is
“0System.SerialNumber%”. Notice how it is enclosed in percent signs (%).
This placeholder references a variable na®exdi al Nunber , which is a
symbol in a symbol table nam&gst em

254

Using String Formatting
The Two Types of Formatting Operations

The Two Types of Formatting Operations

There are two types of formatting operations you can assign to stringsin
HP TestExec SL:

Update The string is updated from the values of items referenced

string from by replaceable parameters in the string. The formatting

parameters operation occurs before the value of the string is returned to
the code that requests it.

Update The values of items referenced by replaceable parameters
parameters in the string are updated from the string. The formatting
from string operation occurs after the value of the string is written.

Each isindividually described below.

Updating a Sring from its Replaceable Parameters

Suppose the formatting operation specified for a string is “Update string
from its parameters.” A diagram of the string from the previous example
prior to replacing the paremeter with its actual value is shown below.

"The serial number is" | +| %System.SerialNumber%

Fixed Part Replaceable Parameter

Suppose the value of SerialNumber is “1234". If so, the actual value
returned when the string is read will be:

The serial nunmber is 1234

255

Using String Formatting
The Two Types of Formatting Operations

The diagram below shows how the substitution of an actual value from the
symbol table is made.

System symbol table

’—‘— more symbols

SerialNumber

1 1234

substituton ''/—m—mmmm8@8m —
"The serial numberis" |+ "1234"
Fixed Part Replaceable Parameter

Although this example is simple, there could have been more than one
replaceable parameter and they could have appeared anywhere—at the
beginning of the string, in the middle of the string, at the end of the string, or
in various combinations. Also, there could have been several fixed parts to
the string, with replaceable parameters interspersed among them. For
example, prior to replacement the string could have been:

The serial nunber is %System Seri al Nunber%for the nodul e

Here, the string consists of two fixed parts—"The serial number is” and “for
the module”—and one replaceable parameter between them.

Updating Replaceable Parametersfrom a String

What happens when the formatting operation specified for a string is “update
parameters from string?” The string is parsed and the values of items

256

Using String Formatting
The Two Types of Formatting Operations

referenced by replaceable parameters in the string are updated from the
string. Refer to the example below.

System symbol table

’—‘— more symbols

SerialNumber
; "1234"
subs?utlon

..........................

"The serial numberis" |+ "1234"

Fixed Part Replaceable Parameter

Here, the value of the replaceable parameter in the string is passed to the
symbol named Ser i al Nunber inthe Syst emsymbol table. The string
for this operation looks the same as in the previous example; i.e.,:

The serial nunmber is 1234

However, this time the formatting operation is “Update parameters from
string”. Because the format specifies “The serial number is” as the fixed
part, followed by a replaceable parameter that references a symbol in a
symbol table, the string is parsed when written to so that the actual value at
the replaceable parameter is written to its associated symbol.

Note

If you wish to use the “Update parameters from string” formatting operation
to update the values of parameters in an action’s parameter block, those
parameters must be “output” parameters; i.e., their Action Output option
must have been enabled when they were created with the Action Definition
Editor.

257

Using String Formatting
How Does String Formatting Work?

How Does String For matting Work?

String formatting lets you apply aformat to a string in a parameter blocks or
in asymbol table. Subsequent use of the strings makes use of the format by
applying the formatting when reading from or writing to the string.

Refer to the example below. Here, the String Editor! was used to apply a

format to a string in a parameter block in an action named “MyAction” that
was created with the Action Definition Editat aPbGet Stri ng() and

Ut aPbSet St ri ng() functions in action routines can access the string,
which will be read or written with the specified format applied to it.

B = |

format applied to string
in parameter block

MyAction parameter biock s
y AR #\
/

read the string’s value write the string’s value

\‘. UtaStringGet Value() /

UtaStringSet Value()~
Action Code

 —r—
String Editor

1. The String Editor is one of several editors that et you edit various types of
datain HP TestExec SL.

258

Note

Using String Formatting

Which Data Types are Supported for Replaceable Parameters?

Which Data Types are Supported for
Replaceable Parameter s?

The following data types are supported for replaceable parametersin string

formats.

Data type

Comments

Int32
INnt32Array

Real64
Real64Array

String
StringArray

Waveform

One dimension only, elements are written/read separated
by commas

One dimension only, elements are written/read separated
by commas

One dimension only, elements are written/read separated
by commas

Elements are written/read separated by commas, only
values of samples—i.e., point data—are used

Even though they are used in strings, replaceable parameters do not
necessarily need to be of type String. Because they are surrounded by
percent signs—e.g., %MyParm%—that have a special meaning to
HP TestExec SL, replaceable parameters are automatically translated
between their native data types and strings as needed.

259

Using String Formatting
What Happens if “Update Parameters from String” Fails?

What Happens if “Update Parameters from
String” Fails?

Correct operation of string formatting when updating replaceable parameters
from a string assumes that values in the actual string match the values that
you specify in the format. For example, with the exception of spacesin a
formatted string, charactersin the fixed part of the string format and the

actual string must match exactly.® If they do not match, any values beyond
the point of the mismatch when the string is read sequentialy are suspect, as
shown below.

String format; i.e., the expected response string:
ABCD | replaceable parameter #1 | EFGH| replaceable parameter #2 |

The actual response string: :
ABCD [replaceable parameter #1 | EF: xy [replaceable parameter #2 |

Lb Mismatch! Data following may be invalid!

If amismatch occurs, the values returned for replaceable parameters beyond
the point of the mismach are error values based upon the data type of the
replaceable parameters, as shown below.

If the data type of the replaceable parameter is...2 Thereturned error value will be...

Int32, Int32Array -99999999
Real64, Real64Array, Waveform -9.99e37
String, StringArray “ScanError”

a. Arrays used with string formatting must be single-dimensional.

1. A single space (blank or tab) in the format matches an arbitrary number of
space charactersin the string value, including zero space characters.

260

Note

Using String Formatting
What Happens if “Update Parameters from String” Fails?

Keep in mind this need for matching formats when working with strings
used with instruments that are |EEE-488.2 compliant. The commands used
to program those instruments use commas and semicolons as separators
between values, and so should string formats used with them. Otherwise,
values cannot reliably be distinguished from one another.

If the formatting operation is “update parameters from string” and the
replaceable parameter in a string is an array data type, the scanned value
does not need to provide values for all the elements in the array. Any
elements for which values are not explicitly specified will be set to the
values listed below.

If the data type of the element is...2 Thevalue will be setto...

Int32Array 99999999
Real64Array, Waveform 9.99e37
StringArray “NoValue”

a. Arrays used with string formatting must be single-dimensional.

261

Using String Formatting
Notes About String Formatting

Notes About String Formatting

Keep the following limitations in mind when using the “update parameters
from string” formatting operation.

Scanning a string for replaceable parameters whose data type is Int32
returns all adjacent numeric values. This means that two Int32 parameters
in a row must be separated by a fixed part. If not, both values will be
merged to return the value of the first replaceable parameter and the
second replaceable parameter will return an error value. Similarly, a
Real64 parameter immediately followed by an Int32 parameter—i.e.,
with no fixed part separating the values—will cause a scanning error for
the Int32 parameter.

The values for elements in an array must be separated by commas when
they appear in formatted strings used to update parameters. Consider the
following formatting operation, which references a single-dimensional
array namedd/ Ar r ay in theSequencelLocal s symbol table:

Example Scannable Sting Y alue

The values of the elements are: 0,0,0

Attributes Formatting |

Format

Format Operation ILIpu:Iate pararneters fram sting j [Locked

IThe values of the elements are; ZSequencelocals. bMydrray?

Suppose you used the following string in your action routine to write
values to the elements in the array:

The val ues of the elenents are: 5,55, 555

Notice how commas are used as separators between values written to the
array’s elements.

262

Using String Formatting
Notes About String Formatting

The array would look like this after the values were written to it:

Yalues | Dimenzions I Attributes I

Dj'x < |

[ndex W alue

1]
1 55
2 ala

« String arrays must not have commas in the values for their elements
because commas are used to separate values when scanning the elements
in arrays.

» If a replaceable parameter contains only the name of a symbol—i.e., no
specifier for the table in which the symbol resides—the order used to
search for the symbol is the current symbol table followed by all public
symbol tables in the order of their scope within the testplan.

263

Using String Formatting
How are Formatted Strings Useful?

How are Formatted Strings Useful ?

Serial numbers provide an example of how string formatting can be useful.
Suppose the serial numbers for modules on your test system consist of a
module hame plus a unigue identifier for each module. For example, the

name of the module might be “ControlModule” and the unique identifiers
for individual modules might range from 1111 to 9999. If so, a complete
module serial number might be “ControlModule2345".

TheSyst emsymbol table contains predefined symbols named

Modul eType andSer i al Nunber, both of which are strings. When it

begins running, your testplan could prompt the system operator for the
module type and write it thbdul eType. As it tested individual modules,

your testplan could use a bar code reader to read identifiers from individual
modules and temporarily store thenSar i al Nunber . If its formatting
operation was specified as “Update string from parameters,” the formatted
string shown below could be used in action code to concatenate the values to
produce the complete serial number for each module.

Serial nunber is %Bystem Modul eType%®®yst em Seri al Nunber %

The complete serial number could be printed on failure tickets as needed or
used elsewhere, such as in datalogging to collect information about the
testing process.

The use of string formatting is described in greater detail with related topics.
The mechanics of applying string formatting are described in the online help
for HP TestExec SL's String Editor.

264

Using Actionsto Control M essage-Based
| nstruments

This chapter provides information about using predefined actionsin
HP TestExec SL to control message-based instruments, which makes use of
string formatting features described in Chapter 8, “Using String Formatting.”

265

Using Actions to Control Message-Based Instruments
Overview of Controlling Message-Based Instruments

Overview of Controlling M essage-Based
I nstruments

Why Use Actionsto Control M essage-Based
| nstruments?

Message-based instruments are instruments controlled by human-readable
messages written in ahigh-level programming language for instruments,
such as SCPI (Standard Commands for Programming Instruments), rather
than by a more cryptic method such as directly writing/reading registersin
the instrument. However, even using a high-level instrument control
language typically reguires knowledge of the command syntax of
instruments.

If you do not already have actions that control message-based instruments,
featuresin HP TestExec SL let those who understand the syntax for
controlling instruments create new actions that are readily usable by others
who do not necessarily know how to program instruments. Actions used to
control instruments resemble other actions but have instrument-specific
parameters in which users specify data to be sent to or received from
instruments. These actions are used with hardware handler software that:

« Manages and interfaces with message-based instruments

* Provides a standard set of functions that send commands and receive
responses as well as reset the instrument, query its error status, and
retrieve its ID. You can customize these for specific instruments.

» Captures in HP TestExec SL's Trace window the history of commands
sent to and received from instruments

e Supports the display of instrument-specific state information in
HP TestExec SL's Watch window

e Supports automatic creation of instrument-specific nodes for use in
HP TestExec SL's switching topology

266

Using Actions to Control Message-Based Instruments
Overview of Controlling Message-Based Instruments

When Can | Use Actionsto Control M essage-Based
| nstruments?

You can use actions to control a message-based instrument if:

< Your interaction with the instrument is limited to replacing parameters of
type Int32, Int32Array, Real64, Real64Array, String, StringArray or
Waveform in commands sent to or received from the instrument

* You do not need to handle SRQs (service requests) from the insttument
¢ The instrument is GPIB, RS-232, or VXI|-based

e The instrument is message-based; i.e., it responds to messages sent in
strings. Instruments that are IEEE-488.2 compliant are examples of
message-based instruments.

1. You can use simple error checking at the end of each message sent or
monitor the instrument for atimeout condition.

267

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

Note

Using Actionsto Control M essage-Based
I nstruments

Topicsin this section describe the use of formatted strings. For an overview
of formatted strings, see Chapter 8, “Using String Formatting.”

Adding the Instrument to the Switching Topology

Do the following once for each message-based instrument you wish to
control via actions.

1. Physically install the instrument in the system, such as by connecting it to
GPIB or by inserting it into a VXI card cage

2. Add the instrument to the system layer of the switching topology by
following the general instructions in “To Add a Module” in Chapter 4
and:

a. Specifying “hwhmsginst.dll” as the Library

b. Choosing which interface style the instrument uses, which can be
stdGPIB, stdVXI, or stdSerial

c. Filling in the parameters for the instrument

Usually, this means setting the address of the instrument in parameters
(logical address for VXI and GPIB). Use the parameter descriptions to
guide your choices. You can let other parameters use their default
values if the instrument is compliant with SCPI or IEEE-488.2, which
includes most new message-based instruments. If you have more than
one of the same instrument or module, the name should reflect that;
e.g., the first power supply could be “PS1” and the second “PS2.”

268

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

Which Actions DoesHP TestExec SL Provide?

The following actions are provided with HP TestExec SL for controlling
message-based instruments. They reside in directdt FestExec SL
home>\actions”. Note that their names begin with “msginst”.

msginstReset Resets the instrument

msginstGetErrorStatus Returns the error status byte from the instrument?

msginstGetID Returns an identifying string from the instrument®

msginstSend Sends a command to the instrument and does not expect a
response

msginstReceive Return a response string from the instrument if one has previously

been requested from the instrument via a msgi nst Send action

msginstQuery Sends a command to the instrument and waits until it receive a
response
msginstBinarySend Sends an arbitrary byte array as part of a message to the instrument

msginstBinaryReceive Receive an arbitrary byte array as part of a response from the
instrument

a. The action’s default settings are correct for IEEE-488.2 compliant instruments. Others may need
changes to the command sent to the instrument and the mask used to isolate error status bits.

b. The action’s default settings are correct for IEEE-488.2 compliant instruments to return a
response that uniquely identifies the instrument.

You can find detailed descriptions of these actions by choosing the Details
button on the Insert Action box before inserting them into a test.

Choosing Which Action to Use

Before you can control an instrument, you must know which kinds of
measurement-related tasks you wish to do with it. For example, a typical
task associated with a power supply might require a “set voltage and current
limit” action to program it to a known state. Once you have identified a task,
choose an action that is appropriate for it. For example, for a power supply
you could choosesgi nst Send to send a message that programs it to a
known state.

269

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

Setting Up the Action

Begin by verifying that the action you have chosen can communicate with
the desired instrument, and that you are using the correct command syntax to
control that instrument, as described below.

1. Create anew testplan for setting up the action, add the chosen action to a
new test in the testplan, and specify the action’s parameters.

In the case of an action that controls a power supply, you might specify
the parameter naméadst to reference instrument “PS1” and the
parameter named “Command” to set a particular voltage and current for
the power supply, such as “:VOLT 5.0;:CURR 2.0". For example:

Parameters for Umzginstsend”

M arme Walue
e P51
[ake] Command AOLT 6.0;CURR 2.0

2. Run the test and make sure the instrument is receiving the command and
acting on it.

For a power supply, you could use its front panel to examine the setttings
for voltage and current, or use a multimeter to verify its output.

For more information about adding a test to a testplan, see Chapter 1. For
more information about adding actions to tests and specifying their
parameters, see Chapter 2.

Copying the Action Definition

Because you do not want to overwrite the original action definition, which
you may need to use again, you must create a copy of it for your use. Make a
copy of the action definition by:

1. Selecting the action in the list under Actions.

2. Choosing the Details button to invoke the Action Definition Editor.

270

Note

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

3. Choosing File | Save Asin the menu bar.
4. Specifying a new, unique name for the action definition.

Use a name that reflects the task the action does, and placeitina

directory that HP TestExecSL searches for action definitions. For

example, the name might consist of a descriptor for the instrument

followed by whatever task the action does, such as “HP6632ProgramVI.”

If you accidentally overwrite an original action definition, look in directory
“<HP TestExec SL home>\samples\msginst\MsglnstUmd” for a copy of it.

Customizing the Action Definition

Now you can customize the generic action definition you copied so that it is
usable by those who do not understand the commands used to program
instruments. Do the following:

1. Use the Add button in the Action Definition Editor to add task-specific
parameters to the copy of the action definition.

For an action that programs a power supply, you might add two new
parameters named “Voltage” and “Current”, as shown below.

— Action Parameters
The current result iz |<NEI RESULT: j
Mame Yalue Data Type Description -
[It P51 Istrument Message bazed+
Carnrnand String Command to send+
/HVD":EQ} 0.0 Feal PS5 voltage i
(0.0 Real PS5 cument 4
Add.. Edit... | Dialete ko Up bdange Drown |

2. Return to the list of parameters for the original action you inserted into a
new test. Select the Value field for the parameter named “Command” and
copy its contents to the Windows clipboard (Edit | Copy or Ctrl-C).

271

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

Continuing with the example of a power supply, you would copy “:VOLT
5.0;:CURR 2.0" to the clipboard.

3. In the Action Definition Editor, paste the copied command into the Value
field for the parameter named “Command” (Edit | Paste or Ctrl-V).

4. Close the testplan that contains the original action.

5. In the Action Definition Editor, choose the Value field for the parameter
named Command.

6. Click in the Value field and choose tIZI button.
7. When the String Editor appears, choose its Formatting tab

8. Change the Format Operation to “Update string from parameters.” Notice
that the command is copied to the Format field.

For the example of a power supply, the result would look like this:

Attributes Formatting |

Format Operation |L||:n:|ate string from parameters j

Format
|:m:|LT E0:CURR 2.0

9. Do the following for each text item for which you wish to substitute a
replaceable parameter in the format:

a. Use the mouse to select the text item.

272

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

For the example of a power supply, you might select “5.0", as shown
below.

Formatted String Y alue
MOLT 5.0:CURR 2.0

Abtributes | Formatting I

Format O peration ILIpu:Iate shing From pararneters ;I

Eormat
|:w:|LT Bli:CURR 2.0

b. Choose the “Reference to” option and use its drop-down list to
specify which item to reference in the symbol table naGed ent
tabl el

For the example of a power supply, you would choose the symbol
named Voltage i€ur r ent t abl e to replace the text item “5.0", as
shown below.

Farmat Operation ILIpdate string fram parameters ;I

Format
WOLT 5.0;:CURR 2.0

{0 Special Character I

% Reference to (=R Curent table
[E Current table

| Izt
== Command

Current

1. Current tabl e meansthe symbol tablein which the string being
formatted resides. Here, it is the symbol table that contains the action’s
parameter block, which contains the new parameters you created.

273

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

¢. Choose the Insert into Format button.

d. Verify that the format now has the name of the item you chose
inserted in place of the text item you previousdly selected.

For the example of a power supply shown below, notice that the text
entry “5.0” has been replaced by a replaceable parameter named
Voltage. Also notice that “Reference to” references “Current
table.Voltage”; i.e., a symbol named Voltage in the current symbol
table.

Farmat O peration ILIpdate strivg from parameters d [T Locked

Format
MNOLT #Molkage?:CURR 2.0

" Special Character I ;I

{* Beference to I Current table Yalkage j

The format for a complete string to program the voltage and current
for the power supply example might look like this:

Eormat
NOLT EValkageX;: CURR XCurment?:

10.Choose the OK button.

11.Update the action description in the Action Definition Editor to reflect
what the action now does, including how to use the task specific
parameters.

274

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

A description of the example of a power supply might look like this:

Action Description:

Action that programs a power supply o ;I
a zpecified voltage & curment. The uzer

must provide values for the Woltage &
Current parameters. ;I

12.Use File | Save to save the modified action definition.

Why Did You Customize the Action Definition?

Until you have done the preceding procedure a few times and used the
results, it may not be obvious what you have done or why you would want to
do it. Refer to the diagram bel ow.

— Parameters for "'ProgramPowserSupplt"
Mame alus
et Ps51
s JYOLT 0:CURR 0
[10]Valtage / 5.0V | Users of the action specify values
JE]| e developer of the action needs

to understand the commands used
to program instruments.

As stated, when you use the predefined actions and formatted strings to
control message-based instruments, only the developer of an action needs to
understand the syntax of the commands used to program the instruments.
Instead of specifying cryptic syntax, users of the action simply fill in values
for parameters that have obvious names such as Voltage and Current.

In the example above, programming Voltageto 5 and Current to 2 isas
simple as specifying the values for a couple of parameters. When the action
executes, the values of the parameters named Voltage and Current will be

275

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

substituted into the command syntax, as shown below, and the resultant
command will be sent to the instrument.

— Parameters for "ProgramP owers upplyis*™
Marmne Y alue
At P51
Cammand A0LT L:curm
Yoltage 5.0
Current 2.0

Using the Action in a Testplan

1. Create anew testplan, add atest to it, and insert the new action into that
test. Run the test with several settings for its task-specific parametersto
verify that the action is working correctly. If problems arise, you can
modify the action’s format string in the testplan until the action works as
desired.

For the action used to program a power supply, you would set Voltage
and Current to various values and and verify that the output from the
power supply is correct.

2. After you have verified that the action works correctly, open its definition
in the Action Definition Editor and copy any changes made to the format
string back to the action definition.

3. If you wish to ensure that users of the action cannot modify its format
string, choose the Locked option, as shown below.

Attributes | Formatting I

Format Dperation ILIpu:Iate string from parameters [¥] Locked

Format
I:"v"EI LT Zvolkagex :CURR ZCurent?

4. If you modified the action, save it.

276

Note

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

What if the Instrument Returns a Response?

The preceding topics described how to use actions to send commands to an
instrument. But what if the instrument returns aresponse string instead? The
processfor creating an action to control an instrument that returns aresponse
issimilar to that for sending a command to an instrument, but the details
vary dlightly, especially when customizing the action definition. Several
sections from the previous procedure reappear below with descriptions of
what is different when receiving a response from an instrument.

If the instrument returns asingle value in its response, it may be adequate to
use that as the result from the action. If the instruments returns multiple
valuesin its response, the following topics describe how to extract each
response to a separate output parameter in the action. If desired, you can use
thensgi nst Query or megi nst Recei ve actionsto see asample of a
valid response.

Choosing Which Action to Use

Consider the following when choosing which action to use with an
instrument that returns a response.

If the instrument... Then use...
Immediately returns a response to a nsgi nst Quer y?
command

Takes awhile to return aresponse andyou nsgi nst Send and

wish to do another task while waiting negi nst Recei ve with one
or more actions between
them to do additional tasks

a. Using megi nst Query isgeneraly the safer of the two approaches
because it avoids the possibiity of trying to receive aresponse from an
instrument without first requesting that response.

Setting Up the Action

Specify aresponse string in the Response parameter. Run the action to verify
that it receives a response from the instrument. To do this, you may need to
precede it with an action that sends a command to the instrument. Or, you

277

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

can usensgi nst Quer y, which combines the command and responsein a
single action.

In the case of an action that controls a frequency counter, you might specify

the parameter named | nst to reference instrument “CTR” and the

parameter named “Response” to accept three values in the format “0;0;0".
These values will contain the peak-to-peak reading returned by the counter
and the minimum and maximum voltage values of the waveform.

r Action Parameters
The current rezult iz: |Hespnnse ﬂ
Mame Yalue |Data Type | Description -
[st CTR Instrument |Message based Senial, Vil or GPIB+
000 Shring Responze fram the instrurment.

Customizing the Action Definition

1. Use the Add button in the Action Definition Editor to add task-specific
parameters to the copy of the action definition.

In the case of a frequency counter, you might add three new

parameters—Reading, MinVolts, and MaxVolts—to the action definition,
as shown below. These parameters would contain the results extracted
from the response string via HP TestExec SL’s string formatting feature.

~ Action Pararmeters
Thee current result is: IHespnnse ;I
Mame Walue Data Type Drezcription Al
Heading\ 0o Real Reading from the counter
(Mirtfolts) 0.0 Real Minimurn voltage of waveform J
E Ma:-c"»-"u:ults/ 0.0 Feal b &wirnum wvoltage of waveform
String Response from the instrument ﬂ

2. Select a parameter, choose the Edit button, and specify the Action Output
option for each of the new parameters you just added, as shown below.

v Action Dutput

278

8.

9.

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

If you wish to choose one of these parameters as the result for limits
checking, choose it in the drop-down list that appears to the right of “The
current result is:”, as shown below.

Achion Parameters

The current result iz

Name {CharzRead [

Return to the list of parameters for the original action you inserted into a
new test. Select the Value field for the parameter named “Response” and
copy its contents to the Windows clipboard (Edit | Copy or Ctrl-C).

Continuing with the example of a frequency counter, you would copy
“0;0;0” to the clipboard.

In the Action Definition Editor, paste the copied response into the Value
field for the parameter named “Response” (Edit | Paste or Ctrl-V).

Close the testplan that contains the original action.

In the Action Definition Editor, choose the Value field for the parameter
named Response.

Click in the Value field and choose tIZI button.

When the String Editor appears, choose its Formatting tab

10.Change the Format Operation to “Update parameters from string.” Notice

that the value of the response is copied to the Format field.

For the example of a frequency counter, the result would look like this:

..........................

Farrat Qperation |L||:n:|ate pararneters from sting ;I
Format
0:0:0

279

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

11. Do the following for each text item for which you wish to substitute a
replaceable parameter in the format:
a Usethe mouse to select the text item.

For the example of a frequency counter, you might select the first “0”,
as shown below.

Example Scannable String 4 alue
[o.00

Attributes | Formatting |

Format Operation ILIpu:Iate parameters from sting ;I

Format
E;D;D

b. Choose the “Reference to” option and use its drop-down list to
specify which item to reference in the symbol table na@ued ent
t abl e.

For the example of a frequency counter, you could choose the symbol
named Reading iBur r ent t abl e to replace the first text item,
“0”, as shown below.

Farmat Operation | pdate parameters from string ;I

Format
0;0:0

{ Special Character I

{* Reference to I Current table

[2] Current table
| [t
E%

= Mt olts

280

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

c. Choose the Insert into Format button.

d. Verify that the format now has the name of the item you chose
inserted in place of the text item you previousdly selected.

For the example of afrequency counter shown below, notice that the

text entry “0” has been replaced by a replaceable parameter named
Reading. Also notice that “Reference to” references “Current
table.Reading”; i.e., a symbol named Reading in the current symbol
table.

Farmat Dperatior ILlpu:Iate parameters fram string ;I [T Locked
Format
ZReading®;0:0

" Special Character I LI

% Feference to I Current table Reading j

The format for a complete string to extract the values of Reading,
MinVolts, and MaxVolts for the frequency counter example might
look like this:

Format
EZReading®; ZMiny olteX 2 e olke X

The example follows the standard for SCPI programming, which states
that response messages may contain both commas and semicolons as
separators. When a single query command returns multiple values, a
comma is used to separate data items. When multiple queries are sent in
the same message, the groups of data items corresponding to each query
are separated by a semicolon.

Here, the data items are separated by semicolons because it is assumed
that these are the responses to multiple queries. Three returned values—
%Reading%, %MinVolts%, and %cMaxVolts%—are referenced to
parameters with similar names in the action: Reading, MinVolts, and

281

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

MaxVolts. When the actions executes, the response is returned in the
Response string and the values of the parameters named Reading,

MinVolts, and MaxVolts are updated, as shown below.! Users of the
action can use those values as desired.

— Parameters for "CounterResponse”
M ame "u"qlrl'm:— N
Responze |—DDD_
[Reading Poov J
MinYoltz 00V
Maxvolts 0.0V ¢— LI

12.Choose the OK button.

13.Update the action description to reflect what the action now does,
including how to use the task-specific parameters.

14.Use File | Save to save the modified action definition.

Debugging Actions That Control M essage-Based
| nstruments

Keep the following in mind when debugging actions used to control
message-based instruments.

« HP TestExec SL’s trace feature is useful when debugging the commands
sent to an instrument and its responses to those commands. The
instrument handler for message-based instruments sends information to
the Trace window when tracing is enabled for the instrument.

For more information about using the trace feature, see “Using the Trace
Feature to Monitor I/O Operations” in Chapter 1 of thsing
HP TestExec SL book.

1. The values shown for Reading, MinVolts, and MaxVolts are “0.0” because
the action has not executed and updated their values.

282

Using Actions to Control Message-Based Instruments
Using Actions to Control Message-Based Instruments

Predefined “msginst...” actions that may be useful during debugging
includensgi nst Reset , nsgi nst Err or St at us,

nmegi nst Get | D, andnsgi nst Recei ve. These are described earlier
in this chapter.

During debugging you can display the state of an instrument in
HP TestExec SL's Watch window, as described in the following section.

283

Using Actions to Control Message-Based Instruments
Notes for Advanced Users

Note

Notes for Advanced Users

The predefined action nameggi nst Bi nar ySend lets you send

binary data to an instruments. This is useful for instruments that require
large amounts of data to program them, and that can accept data in a
binary format. If you wish to use this action, you must understand the
conventions for sending arbitrary blocks of data to instruments that are
IEEE-488.2 compliant.

The format that works best wittsgi nst Bi nar ySend is “definite

block length.” Data sent in this format begins with a prefix of
#8NNNNNNNN, where NNNNNNNN is the number of bytes to send,
padded with zeroes on the left as needed to ensure the correct number of
characters. Thesgi nst Bi nar ySend action lets you specify how

many elements to send from an Int32 array, how many bytes to send from

each element in that array, and the order in which to send the'tiftes.
action also provides prefix and suffix strings in which you can send
character information or extra commands to the instrument.

Be sure that the number of bytes to send indicated in the prefix matches the
number of bytes to send indicated by the number of elements multiplied by
the number of bytes per element. For example, a prefix of #800001000
means to send 1000 bytes, which could be 500 bytes per element sent in 2
elements: 500 x 2 = 1000.

The predefined action namedgi nst Bi nar yRecei ve lets you

receive binary data from instruments. The format that works best with
negi nst Bi nar yRecei ve is “definite block length.” The action can

be configured to receive a fixed nhumber of prefix characters, a fixed
number of suffix characters, and arbitrary binary data between the prefix
and suffix. Binary data is stored in the elements of an Int32 array, and the
action’s parameters let you specify how many bytes to put in each
element and the order of those bytes.

1. Thedefault byte order is correct for sending binary data to instruments that
are |IEEE-488.2 compliant.

284

Using Actions to Control Message-Based Instruments
Notes for Advanced Users

Loading the hardware handler named “hwhmsginst.dIl” causes it to read
an initialization file named “hwhmsginst.ini” located in the same

directory as the “.dII” file. You can use entries in the “.ini" file to
customize the default parameter values for a specific instrument. If you
enter new, instrument-specific sections in the “.ini" file, users wishing to
add an instrument of that type to the system configuration can easily
select these default parameters. This prevents them from having to know
the specifics of an instrument to use it.

Customizing the initialization file can be useful when:

a. Theinstrumentis not IEEE-488.2 compliant, and uses commands that
are different from the standard reset (*RST) and ID query (*IDN?)
commands.

b. You want to specify mnemonic node names for the terminals of an
instrument when it is added to the switching topold@pdeNanmenn
arguments added to the initialization file appear in the NodeNames
parameter for the module when it is added to a topology file, and are
used to add instrument node names to the topology file.

c. You want programming information for the instrument to appear in
HP TestExec SL's Watch windowat chW ndownn arguments
added to the initialization file appear in the WatchList parameter for
the instrument, and contain query commands to send to the instrument
whenever the testplan pauses, plus a label that appears in the Watch
window for a response to the query.

File “hwhmsginst.ini” contains instructions that describe how to modify
it. Load the file into a text editor, such as WordPad in its text mode, to
read the instructions or to modify the file.

285

10

Testing Multiple UUTs

This chapter describes how to increase the throughput of your test system by
using the HP Throughput Multiplier feature to test simultaneously multiple
UUTswith asingle set of hardware resources and a single testplan.

287

Note

Testing Multiple UUTs
About Multi-UUT Testing

About Multi-UUT Testing

Multi-UUT testing viathe HP Throughput Multiplier feature requires a
separate license available from Hewlett-Packard. A license provides you
with akey that you must use to enable multi-UUT testing, as described later
in this chapter. Unless you enable multi-UUT testing, you cannot run or edit
multi-UUT testplans.

Why Test Multiple UUTS?

The hardware in atypical test system is expensive. If your test systemis
testing only one UUT (unit under test) at atime, you may not be using it to
its maximum. For example, you may be tying up all the resources on a
complex (and expensive) test system just to test smple UUTs one at atime.

Sometimes testing a UUT requires expensive, additional hardware. For
example, automotive airbag modules require a shaker table to test their
impul se response, which increases the cost of the test system. Here, it is
advantageous to maximize the use of resources by shaking multiple UUTs at
once and capturing their responsesin parallel. Also, such modules cannot be
shaken too many times because their sensors are fragile, which makes it
unacceptabl e to shake a group of them in sequence.

Another situation where the ability to test multiple UUTs can be useful is
when the printed circuit boards for UUTs are manufactured in panels. It may
be necessary to test UUTs whilethey are still in panel form to match how the
they are moved on an automated assembly line or to minimize their handling
time.

A common form of multipletesting isto havetwo UUT fixture positions and
test one position while loading/unloading the other to minimize handling

time. This is sometimes called “dual-well” testing. This, too, presents an
opportunity to save time via multiple-UUT testing.

All of these methods of testing multiple UUTs on a single test system
contribute to reducing your cost of testing per UUT. Also, testing multiple
UUTs on a single system reduces the amount of floor space that might
otherwise be occupied by multiple test systems.

288

Testing Multiple UUTs
About Multi-UUT Testing

Note The most important thing to know about multi-UUT testing is that if your
test system has the resources to handle multiple UUTS, it often can test them
faster together than it can test them individually.

What Makes Multi-UUT Testing Faster ?

At first glance, it might seem like testing multiple UUTs would be no faster
than testing them one at atime. For example, typical instruments make only
one measurement at a time, not multiple measurements that overlap one
another. However, the time needed to test aUUT is a combination of several
times:

» The time to physically handle the UUT; i.e., connecting/disconnecting it
from hardware resources

* The time the UUT takes to arrive at the correct state to test it

e The time it takes to set up instruments to make a measurement

» The time it takes to make the measurement

* The time to analyze the measurement results

e The time to report the results of the measurement (including datalogging)

If any of these steps dominates the total test time and that test time is too
long, there are potential opportunities to increase throughput by
simultaneously doing that step for multiple modules and overlapping the
steps that are slowest. Also, if there are multiple slow steps, there may be
further opportunities for overlapping them.

Refer to the diagram below, which shows the flow of testing from top to
bottom with respect to time for two UUTs. Tasks are done in series in
conventional, sequential tests, which means the total time for testing is the
sum of the times required to do the individual tasks. Multi-UUT testing,
however, lets tasks that are common to all UUTs—such as connecting loads,

289

Testing Multiple UUTs
About Multi-UUT Testing

applying power, and setting up instruments—be done in parallel, which
substantially reduces the overall time for testing.

Sequential Test Multi-UUT Test
UUT1 uuT2 UuT1 uuT2

Connect load | Connect load |

I I

[Apply power | | Apply power |
ﬁ_l Set up instrument | | Set up instrument |

% [setupuut | [setupuut |
g | Delay | | Delay | | Set up UUT |
| Measurement | | Measurement | | Delay |
_| Unload | | Measurement |
Connect load | | Unload |

Apply power |

Set up instrument |

Delay

Unload

|
|
|
[setupuur |
|
|
|

Measurement |

How Does HP TestExec SL Test Multiple UUTS?

A feature of HP TestExec SL called the Throughput Multiplier automatically
overlaps otherwise idle periods and in many cases lets you test multiple
UUTs faster than they could be tested individually. The Throughput
Multiplier speeds up test times by:

« Overlapping tests for a single module by using setup “dead time” to
overlap multiple tests or actions within tests

» Reducing handling time by coordinating multiple nested tests; i.e.,
running the test for UUT A while putting UUT B in place for testing

290

Testing Multiple UUTs
About Multi-UUT Testing

« Reducing testing time by testing more than one module at once, which
uses setup “dead time” and duplicated resources. Examples of this
include setting up instruments or power supplies only once and then
using them to test multiple modules.

« Allowing for multiple spots in the testplan where operations are done
simultaneously across all modules. For example, if a UUT is slow to
respond to a command, that command can be simultaneously sent to
multiple UUTs and the time spent awaiting a response is similar to that of
a single UUT instead of multiple UUTs.

Note The appearance of some of HP TestExec SL's forms change depending upon
whether you are testing single or multiple UUTs. For example, when testing
multiple UUTs the Switching Path Editor presents an additional option that
lets you specify the UUT to which the switching paths apply.

What Must You Do to Test Multiple UUTS?
You can use the Throughput Multiplier to test multiple UWfen all the

UUTs are of a single type; i.e., you cannot mix different types of UUTs in a

testplan. The overall steps you must follow when creating a multi-UUT

testplan are:

» Enable multi-UUT testing in HP TestExec SL's initialization file

» Create a UUT topology layer for the first UUT position using UUT
position names as part of the node names associated with specific UUT
positions

« Create and debug a normal testplan for the first UUT position

e Convert the testplan to a multi-UUT version

» Add flow control statements as needed

e Add UUT positions as needed

* Run the testplan and debug the new UUT positions

291

Testl

Testl

Testing Multiple UUTs
About Multi-UUT Testing

These steps are described in greater detail |ater.

Example of a Multi-UUT Testplan

The left pane of the Testplan Editor window might look like thisfor a
multi-UUT test:

Testplan Sequence: |Main j

test Test]

for UutPozld = UutkdinPoszld to ot axPosld step 1

test Test? | poz=_utPoszld
test Test3 | pos=UutPosld
riest
tezt Setupd | pog=<dll:
test Testd | poz=<All:

Notice that many of the tests have comments to their right that identify for
which UUT positions they will execute during multi-UUT testing. These
comments are automatically inserted when you specify the multi-UUT
optionsfor tests.

This testplan implements the flow of tests shown below.

Test2‘Test3 Setup4 —— —— —— | Test4

Testl

Test2 ‘ Test3 Setup4 — Test4
Test2 ‘ Test3 Setup4d — ——

Test4

The exampl e above shows synchronous execution of homogeneous tests for
three UUT positions. The rows represent the tests for a particular UUT
position, such as on amulti-UUT pandl, and the columns represent the flow
of time. Test 1 isexecuted for each position and followed by Test 2 and
Test 3 for each position. Finally, a setup test and its associated test—
Set up4 andTest 4, respectively—are executed for each position. The
dashed lines show the relationships between the setup tests and their
associated tests that do tasks such as make measurements.

Notice how variableslut Pos| d, Uut M nPos| d, andUut MaxPos| d
are used in the testplan to count infibre.next...step loop. These variables

292

Testing Multiple UUTs
About Multi-UUT Testing

are predefined symbols that appear in the System symbol table when the
HP Throughput Multiplier is enabled.

You can find samples of multi-UUT testplans in directorfARTestExec S
home>\samples\multipleUUT” along with a “readme.txt” file that describes
how to use them.

Symbols Used by Multi-UUT Testing

Multi-UUT testing uses the following predefined symbols in the
Sequencelocals symbol table, whose scope is global to all tests. These
symbols appear in multi-UUT testplans to control the flow of testing. In

most cases, HP TestExec SL maintains the values of the symbols and you do
not need to manipulate them unless your testing needs are unique.

Symbols used to control the sequence of multi-UUT testing

UutPoslid The identifier of the current UUT position when
testing a group of UUTs. The value of this symbol
should be between Uut M nPosI d and
Uut MaxPosl d.

UutMinPosld The identifier of the minimum UUT position. The
value of this symbol, whose default is 1, should be
the same as the lower boundary of any arrays used
to store data while testing multiple UUTs. A change
to this symbol’s value takes effect on the next run of
the testplan.

UutMaxPosld The identifier of the maximum UUT position. The
value of this symbo should be the same as the
upper boundary of any arrays used to store data
when testing multiple UUTs. A change to this
symbol’s value takes effect on the next run of the
testplan.

UutXoutFlags An array whose contents indicate whether to test
each UUT position. 0 indicates that the UUT in that
position should be tested, and 1 indicates that it
should not be tested.

293

Testing Multiple UUTs
About Multi-UUT Testing

Symbols used for reporting the results from multi-UUT testing

UutSerialNumbers An array of the serial numbers for the UUTs at each
UUT position.

UutTestingStates An array that contains the current state of testing for
each UUT position. These states correspond to the
testing states returned by the State property of the
HP TestExec SL Control, which is described in
Chapter 1 of the Customizing HP TestExec SL
book.

UutPosNames An array of the names for each UUT position in the
fixture.

M ore About UutPosld

The previoustopic lists Uut Pos| d among the symbols used by multi-UUT
testing. Because Uut Posl d isintegral to multi-UUT testing, additional
things you may need to know about it are listed below.

e The value otlut Posl d is controlled by the sequencer inside tests

» The various options you can specify for individual tests during
multi-UUT testing (described in greater detail later) affect it as follows:

The option... Causes the sequencer to...

Repeat this test for all UUT Repeat the test with successive

Positions values of Uut Pos| d. When done, it
resets Uut Posl d to its starting
value.

Execute this test for the UUT Honor the value of Uut Pos| d at the

Position defined by ‘UutPosld’ beginning of the test; i.e., it does not
modify the value of Uut Posl d

Execute this test once Set the value of Uut Posl d to

independent of UUT positions Uut M nPosl d - 1 while the test
runs and restore the previous value
when the test ends

294

Testing Multiple UUTs
About Multi-UUT Testing

Multi-UUT Effects on Datalogging

HP TestExec SL maintains a separate buffer that contains datal ogging
information for each UUT position. This lets HP TestExec SL create a
separate datalogging file for each UUT position. If you customize the format
of the log records to log the vaues of any of the symbols used for
multi-UUT testing, as described above, HP TestExec SL will ensure that
symbol Uut Pos| d aways reports the position for which the log record is
being produced. Thisletsyou parse the log records to determine which UUT
position the log data describes. If a particular UUT position is omitted from
testing because it is disabled, no datalogging file will be created for that
UUT position.

Multi-UUT Effects on Reporting

Status information sent to HP TestExec SL's Report window is much the
same for single or multi-UUT testing. However, at the end of each run of the
testplan during multi-UUT testing HP TestExec SL will loop through the
status reporting for each UUT position. The result from each test will
indicate which position the result is for. It also will indicate as “Testplan
Stopped” any UUT positions that were not tested. Finally, it will indicate any
UUT positions that were not completely tested because of branches in the
flow of the testplan, such &n Fail Branch To branching.

Multi-UUT Effectson Testplan Listings

Multi-UUT testing displays extra information in listings of testplans and
their contents, such as:

« An indication that multi-UUT testing was enabled
< An indication of which tests will execute for all UUT positions

e The parameters used by switching actions for each UUT position

Multi-UUT Effects on Breakpoints & Single-Stepping

If a breakpoint is set on a test that Eascute for all UUT positions
specified for it (on the Options tab in the right pane of the Testplan Editor

295

Testing Multiple UUTs
About Multi-UUT Testing

window), the break will occur for every UUT position before executing the
test. Thismaintainsthe Uut Pos| d setting across pauses in the testplan, and
lets looping resume at the current count when the testplan continues.

Single-stepping a multi-UUT testplan will also pause the testplan after each
iteration in the loop for al UUT positions.

When paused at a breakpoint or during single-stepping, you can examine
HP TestExec SL's status line (at the bottom of the main window) to see the
name of the UUT position that will execute next.

Multi-UUT Effects on Switching

Switching actions in tests let you control switching hardware, such as relay
matrixes, to set up connections needed during testing. For example, a
switching action might connect the UUT to a power supply, an instrument to
provide a stimulus, and an instrument to measure a response.

When testing multiple UUTSs, connections used to test one UUT position
often need to be reused, with only minor variations that move the
connections from one UUT position to the next, to test additional UUT
positions. To support this need, HP TestExec SL provides a variation on
switching actions for multi-UUT testing. As shown below, you can specify
whether the paths are identical for all UUT positions or unique for each
position.

Paths arel |0 - Identical for all UUT positions. * I I

{1 - Unigue for each UUT position.

Having identical paths means the same path is used for all the UUT positions
tested by a given test, while having unique paths means you can specify a
separate path for each UUT position.

296

Testing Multiple UUTs
About Multi-UUT Testing

Refer to the example below, which shows a switching action when identical
switching paths are used in atest for multiple UUT positions.

r Parameters for "Switching''
M arne Yalue a
B Path 1) LUT-Fird ICHHT Bus
B Path 2] LUTT-Pin2IDrmrnHiT LU T 1-Fin2 (Ol S reHil —
B Path 3] LUTT-Pin2ICtriLol Bus
e Path [4) LUTT-Fird IJUT1-Load? LI

Now refer to the following example, which shows a switching action when
unique switching paths are used, one per UUT position. Notice how a
drop-down list appears that lets you choose which set of pathsto view or

edit.
— Parameters for "Switching'
M ame W alue -
0-LUTT 2
Fep{ Path (1] i)
B Path [2) 2-UUT3
B Path 3] UUTT-Fin2ICtiLolBus LI

297

Testing Multiple UUTs
Testing Multiple UUTs

Testing Multiple UUTs
The best way to create amulti-UUT testplan is to begin with atestplan that

testsasingle UUT position and then expand it by adding UUT positions and
verifying their operation as you add them.

Enabling Multi-UUT Testing

If the HP Throughput Multiplier featureis not already enabled, do the
following to enable multi-UUT testing on your test system:1

1. Useatext editor, such as WordPad in its text mode, to load file
“<HP TestExec 9. home>\bin\tstexcsl.ini”.

2. Editthe[Process] section of the initialization file to read:

[Process]
Throughput Multiplier License=<your license number>

For example, if the number on the paper licence you received for the
Throughput Multiplier option waXYZ123, you would enter:

[Process]
Throughput Miltiplier License=XYZ123

3. Save the modified file and exit the editor.

Note If you edit the initialization file while HP TestExec SL is running, you must
exit and restart HP TestExec SL for the change to be seen.

1. You cantell if the feature is enabled by loading atestplan and choosing
Options | Testplan Optionsin the menu bar. If the Testplan Optionsbox hasa
tab labeled Throughput Multiplier, then the feature is enabled.

298

Note

Note

Testing Multiple UUTs
Testing Multiple UUTs

Creating the First UUT Position

Creatinga UUT Topology Layer for the First UUT

Your goal in creating atopology layer for the first UUT position isto define
topology that is readily expandable for additional UUT positions.

Create a UUT topology layer for the first UUT position. Specify UUT node
namesthat combine ageneric UUT name with aspecific UUT poasition, such
asUUT1_Gnd. Thismakesit easy to add more UUT positions later, such as
UUT2_Gnd and UUT3_Gnd. Other examples of appropriate names for
nodes are:

For UUT1: UUT1_Pinl, UUT1 Load3
For UUT2: UUT2_Pinl, UUT2_Load3
For UUT3: UUT3_Pinl, UUT3_Load3

Notice how, with the exception of its unique identifier, each UUT’s list of
nodes is identical to those of the other UUTs. The UUT names must be
identical, including capitalization, except for the number that identifies the
UUT position.

For more information about creating topology layers, see Chapter 4.

Creating & Debugging a Testplan for the First UUT Position

Create a testplan and debug it as you would for a single-UUT testplan.
Because you begin by working with only a single UUT position, for all
practical purposes the initial testplan is a single-UUT testplan.

For more information about creating and debugging testplans, see Chapter 1.

299

Caution

Note

Testing Multiple UUTs
Testing Multiple UUTs

Converting the Testplan to a Multi-UUT Version

After you have created a basic testplan for asingle UUT position, you must
convert the testplan to amulti-UUT version.

Be sure you want to convert the testplan to amulti-UUT version. Once you
have converted atestplan to amulti-UUT version, you cannot easily convert
it back to asingle-UUT version.

Globally Enabling Multi-UUT Testing

1

2.

3.

Choose Options | Testplan Options in HP TestExec SL's menu bar.
Choose the Throughput Multiplier tab.

Choose thédd Multiple UUT Features button.

In the field to the right o€urrent number of positions, specify how many
UUT positions you wish to test. For example, if you are creating a test for
a multi-UUT panel that contains 4 UUTs, specify “4” here.

Choose th&Jpdate Position Names button.

Edit the default names of the UUT positions as needed by clicking them

in the list undeEnable UUT Position(s) and choosing thedit UUT
Name button to invoke a dialog box that lets you edit their names.

Be sure the names of UUT positions that you specify here match those you
used when defining the switching topology; e.g., if your topology has nodes
named UUT1_Gnd and UUT1_Loadl, you need a matching UUT position
named UUTL1.

7.

Tip: You can click the name of a UUT position in the list and then use the

Move Name Up or Move Name Down button to reposition it.

Uncheck the names of all UUT positions but the first one to disable them

for now.

300

Testing Multiple UUTs
Testing Multiple UUTs

8. Choose the OK button.

9. A dialog box appearsto inform you that multi-UUT testing has been
enabled. It also asksif you wish to use the recommended default settings
for multi-UUT testing. Follow the instructions and choose the Yes or No
button as appropriate.

Controlling the Flow of Testing

Adding Flow Control Satements

If portions of your testplan require looping or branching based on UUT
positions, add the appropriate flow control statements. For example, you
might surround a series of testslike this:

for UutPosld = Uut M nPosld to Uut MaxPosld step 1
test Test5
test Test6

next

to have them repeated for all UUT positions. You can evaluate the symbols
described earlier under “Symbols Used by Multi-UUT Testing” in flow
control statements that control the flow of testing.

Adding flow control statements can be an iterative process, and you may
need to add additional statements as you add new UUT positions.

Specifying Multi-UUT Optionsfor Individual Tests

If desired, you can specify how each test executes with respect to UUT
positions during multi-UUT testing. Do the following for each test:

1. Select the test in the left pane of the Testplan Editor window.

2. Choose the Options tab in the right pane of the Testplan Editor window.

301

Note

Testing Multiple UUTs
Testing Multiple UUTs

3. Choose the desired option under Throughput Multiplier configuration, as

described below.

Choose this option...

Repeat this test for all
UUT Positions

Execute this test for the
UUT Position defined
by ‘UutPosld’

Execute this test once
independent of UUT
positions

To have the test execute...
For all possible UUT positions unless:?

e A particular UUT position has exceeded the
Halt on failure count limit for the testplan (as
set on the Execution tab in the Testplan
Options box), in which case the test will not
execute for that UUT position.

* The UutXoutFlags setting for a particular
UUT position is non-zero (Xout or disable
this UUT position), in which case the test will
not execute for that UUT position.

Only for the UUT position specified by the
current value of symbol Uut Posl d in the
Sequencelocal s symbol table.

Regardless of the UUT position. Test results will
affect the testing results for all UUT positions.
Test results will be added to the report
information acquired during testing. Datalogging
files will be written for all UUT positions.

a. Therange of possible UUT positionsis specified by the values of
symbols UutMinPosld and UutMaxPosld in the System symbol table,
which are read when the testplan begins running. Changes to the val ues of
these symbols while atestplan is running will be ignored.

Given the options above, all tests whose execution depends on the UUT
position must have their option set to “Repeat this test for all UUT
positions” or “Execute this test for the UUT Position defined by
‘UutPosld’.” Otherwise, they will execute only once for the first UUT
position, as if running a single-UUT testplan.

302

Note

Testing Multiple UUTs
Testing Multiple UUTs

Adding UUT Positionsto the Testplan

After you have created and debugged the first UUT position and converted
the testplan to amulti-UUT version, do the following steps for each
additional UUT position.

Instead of adding many new UUT positions at once, we suggest that you add
new positions one at atime, and then run the testplan to verify that they work
correctly. This methodical approach makes it easier to troubleshoot any
problems that may occur.

Adding a New UUT Position

1. Modify the switching topology by adding node namesfor each new UUT
position. For each position, specify the generic name of each UUT
position plusits unique prefix aliased to the correct system resources.

2. Choose Options | Testplan Optionsin the menu bar.
3. Choose the Throughput Multiplier tab.

4. Enablethe check box for the next available UUT position in thelist under
“Enable - UUT Position(s)”

5. Choose the OK button.

6. Specify the switching paths for any switching actions used by the newly
created UUT position.

You have the option of specifying whether the paths are identical for all
UUT positions or unique for each position. As shown below, this is
controlled by an option on the Actions tab in the right pane of the
Testplan Editor window.

Paths argl |0 - Identical for all UUT positions. hd I I

{1 - Unigue for each UUT position.

303

Testing Multiple UUTs
Testing Multiple UUTs

If you choose the “Unique for each UUT position” option, which lets you
specify an individual set of paths for each UUT position, you also must
specify which position you are working with, as shown below.

— Parameters for "Switching'

Mame Yalue -
0-UUTT i
[Path 1] -

70072
B Path (2] 2-UUT3

B Path 3] UUTT-Fin2ICtiLolBus LI

After you have done this, you can specify the paths as usual.

Note As you add UUT positions when using the “Unique for each UUT position”
option, HP TestExec SL automatically creates the appropriate set of new
paths. In many cases, you probably will not need to edit the new paths
because they will be correct as-is.

For more information about specifying switching paths, see “Controlling
Switching During a Test/Test Group“ in Chapter 2.

Running the Testplan & Debugging the New UUT Position

Run the testplan and debug any problems associated with the new UUT
position.

304

Testing Multiple UUTs
The Multi-UUT Operator Interface

The Multi-UUT Operator Interface

Note This section assumes you are familiar with the single-UUT operator
interface described in Chapter 1 of the Customizing HP TestExec S book.

Besides the sample operator interface written in Visual Basic that supports
single-UUT testing, there also is a sample operator interface that supports
multi-UUT testing viathe HP Throughput Multiplier feature of HP TestExec

SL. As shown below, the multi-UUT operator interface uses aframed set of
identical controlsto convey information about individual UUTs. Each set of
controls shows the UUT’s pass/fail status and serial number plus lets the
user enable/disable the UUT for testing and report generation.

(5 0 Fort v 1 et s st mn]|
HP TestExecSL [
..[k-m-.u = | 0 Passed, 4 Failed

R 5 - [A | S

indal it | gl | gt | s e it |

Trrvw | e o L [T
n_| | | ma |CRe e | i

I - =T -1
———y - | Feasiimi 5 i

an
.

W
i

Fand § Foaed Temwd i e BTE e ATLWH D T AR

¥ s el Ninad B il ¥

You can find the code for the sample operator interface’s project in directory
“<HP TestExec SL home>\samples\visualbasic\operatorinterfaces\multiple”.

A compiled, executable form of the operator interface resides at

“<HP TesteExec SL home>\bin\MultipleOpUi.exe”. Also, you can run the

305

Testing Multiple UUTs
The Multi-UUT Operator Interface

multi-UUT operator interface from the “HP TestExec SL” program group in
the Windows Start menu.

Compatibility of Single- & Multi-UUT Operator
| nterfaces

Running a Multi-UUT Testplan on a Single-UUT Interface

If you run a multi-UUT-enabled testplan on a single-UUT operator interface
(such as one derived from the “typicalopui” sample provided with

HP TestExec SL), the testplan will run to completion. However, none of the
data for individual UUTs will be visible, nor will there be any control over
the serial numbers of UUTs or thiat XQut flags that determine which

UUTs are tested. The Report window will show an intermingled collection
of the streams of report information from individual UUTs.

Running a Single-UUT Testplan on a Multi-UUT Interface

If you run testplan that is not multi-UUT-enabled on a multi-UUT operator
interface, the information for only one UUT will be displayed. The Report
window will show the report information for that UUT.

Some Differences Between the M odules

In many respects the features of the multi-UUT operator interface are similar
to those of the single-UUT operator interface, including the naming of forms
and modules. The main differences are described below.

Form/Module Comments
frmMain Includes additional code to handle multiple UUTs
modAppSpecific Changes to set up the captions for additional

controls used by multi-UUT testing

modConfiguration The feature that allowed automatically running a
testplan after loading the bar code for a testplan has
been disabled

306

Testing Multiple UUTs
The Multi-UUT Operator Interface

Unique Features of the Multi-UUT Operator Interface

Variable mbMultiUutTestplan

A Boolean named nmbMul t i Uut Test pl an, which residesin form

f r mVAi n, representsthevalue of theMul t i Uut Test pl an property read
from the HP TestExec SL Contral. If mbMul t i Uut Test pl an istrue, the
operator interface manages multiple UUTSs; if it isfalse, it does not.

Shortcuts When Accessing Symbolsin Symbol Tables

The multi-UUT operator interface makes use of the special symbols

associated with multi-UUT testing (described earlier under “Symbols Used
by Multi-UUT Testing”). To make it easier to access those symbols, code in
formf r mvai n in the multi-UUT operator interface provides “wrapper”
functions for returning, and sometimes setting, the values of the symbols.
The wrapper functions are:

The function named ... Is used to access the symbol...
GetUutPosld() UutPosld
GetUutMinPosld() UutMinPosld
GetUutMaxPosld() UutMaxPosld
GetUutSerialNumbers() UutSerialNumbers
SetUutSerialNumber()

SetUutSerialNumbers()

GetUutPosNames() UutPosNames
GetUutTestingStates() UutTestingStates
GetUutXoutFlags() UutXoutFlags
SetUutXoutFlag()

SetUutXoutFlags()

Potential Differencesin the Indexing of Arrays

To increase speed, the multi-UUT operator interface keeps local copies of
theUut PosNanes andUut Xout FI ags symbols, both of which contain
arrays, found in HP TestExec SISequencelLocal s symbol table.

307

Note

Testing Multiple UUTs
The Multi-UUT Operator Interface

Because the lower index of arraysin symbol tables can vary but the control
arrays used in the multi-UUT operator interface have afixed lower index of
1, converting between the two indexes may be necessary.

Code in HP TestExec SL references arrays associated with multi-UUT
testing in symbol tables via avariable named Uut Pos| d, whereas codein
the multi-UUT operator interface references controlsin control arraysviaa
variable named Uut Di spl ayPosl d. The following functions are
provided in form f r mVRi n to convert between the two kinds of indexes for
these arrays.

UutDisplayPosld() Converts a specified Uut Posl d to its equivalent
Uut Di spl ayPosl d value

UutPoslId() Converts a specified Uut Di spl ayPosl d to its
equivalent Uut Posl d value

Changing the Number of UUT Positions

The sample multi-UUT operator interface has a predefined number of UUT
positions. But what if you wish to change the number of positions? A
function named Cr eat eUut Di spl ayCont rol Array inform

f r mvAi n isused to define the control array that contains the set of controls
for each UUT position. If you wish to change the number of UUT positions,
you can modify the way this function operates.

The physical layout of the sample multi-UUT operator interface limits the
maximum number of UUT positions to about 30. If you increase the number
beyond this, your UUT position indicators (sets of controls) may becometoo
small to be easily readable. If so, you may wish to adopt a different strategy
for organizing the indicators, such as atabbed layout or MDI forms.

308

Testing Multiple UUTs
The Multi-UUT Operator Interface

Considerationsfor Factory Automation

How are Serial Numbers Read?

The multi-UUT operator interface operates such that any valid entry into the
serial number field resultsin aUUT position being enabled. Thislets users
quickly scan bar codes across a group of UUTs without using the keyboard.

What if the Testplan Reads Serial Numbersfrom UUTS?

There are cases where a testplan reads the serial numbers of UUTs directly

from the UUTs themselves and needs to update the operator interface with

those serial numbers. If so, you can have aSendUser Def i nedMessage
action (in “<HP TestExec S home>\samples\uidebug\actiondefinitions”) in
your testplan send a user-defined message named

ReadUut Ser i al Nunber sFroniTest pl an whose ID is 50101. When

the operator interface receives this message, it will reread the value of the
Uut Ser i al Nurmber s symbol for the testplan and update the operator
interface as needed.

For more information about user-defined messages, see “Understanding
User-Defined Messages” in Chapter 1 of Getomizing HP TestExec S
book.

What if the Testplan Getsthe Testing Status from UUTS?

Suppose the testplan attempts to initialize a UUT and finds that it cannot talk
to it. In that case, the testplan should not test the uninitialized UUT but
should test other UUTs that it was able to initialize. The testing status
indicator—i.e., “flag"—in arrayJut XQut FI ags (in the SequenceLocals
symbol table) for the unresponsive UUT should be set to 1 (no test) and the
multi-UUT operator interface should be updated to disable the testing of the
defective unit.

Whenever the multi-UUT operator interface needs to be updated with the
status of th&ut Xout Fl ags array for the group of UUTs being tested, you
can have &endUser Def i nedMessage action (in “<HP TestExec SL
home>\samples\uidebug\actiondefinitions”) in your testplan send a
user-defined message nanRehdUut XQut FI agsFr onilest pl an

whose ID is 50102 .

309

Testing Multiple UUTs
The Multi-UUT Operator Interface

For more information about user-defined messages, see “Understanding

User-Defined Messages” in Chapter 1 of Gestomizing HP TestExec S
book.

310

| ndex

A

aborting atestplan, 32
action

adding a keyword to, 100

adding a parameter to, 97

adding parameters without modifying
behavior of, 89

adding revision control information
for auditing, 120

adding to atest or test group, 64

creating a switching action, 76

creating in C, 102

creating in HP BASIC for Windows,
151

creating in HP VEE, 139

creating in National Instruments
LabVIEW, 145

debugging actions used to control
message-based instruments, 282

defining, 92

deleting a keyword from, 100

deleting a parameter to, 99

deleting a switching action, 77

deleting a switching pathin a
switching action, 78

designing for reusability, 88

DLL style, 103

documenting action definitions, 89

documenting for auditing purposes,
211

example of two action routinesin a
singleDLL, 134, 135

finding specific text in alist of
actions, 42

languages you can use to create, 87

list of predefined for controlling
message-based instruments, 269

modifying a parameter to, 98

modifying a switching path in a
switching action, 77

overview of creating, 86

predefined provided with HP
TestExec SL, 86

quick search for when inserting into a
test, 181

removing from atest or test group, 68
searching for in alibrary, 181
See also "C action”
See also "HP BASIC for Windows
action"
See also "HP VEE action”
See also "National Instruments
LabVIEW action"
sharing a variable among, 73
shortcut when inserting into atest or
test group, 66
single-stepping through, 47
step-by-step search for when inserting
into atest, 181
things to know before creating, 86
types of parameters used with, 95
used to control message-based
instruments, 265
using to control instrumentsvia
VXlplug&play, 243
viewing & printing contents of, 39
adias
adding to switching topology, 172
deleting from switching topology, 175
duplicating in switching topology, 178
modifying in switching topology, 173
API functions used to control switching
paths, 115
arithmetic operators in flow control
statements, 17
arrays used with string formatting, 262
assignment operator ("="), 16
auditing, 210
adding revision control information
for actions, 120
controlling the appearance of the
status list on the Document tab,
217
controlling the operation of the
revision editor, 218
documenting testplans, actions &
switching topology, 211
documenting tests, 212
setting up auditing features, 217
viewing or printing information, 212

Index-2

automatically starting an automation
interface, 215
automation interface
automatically printing failure tickets,
215
setting up, 215
specifying the polling interval for
hardware handlers, 216
starting automatically, 215

B

behavior of datalogging, 189
selecting, 192
branching
on afailing test, 21
on apassing test, 21
on an exception, 22
breakpoint in atestplan, 44

C

C action
adding to an existing DLL, 134
creatinginanew DLL, 121
data types for parametersin actions
creating using a C compiler, 104
data types for parametersin actions

creating using aC++ compiler, 107

debugging, 136
exception handling, 111
using to control switching paths, 114
code reuse
adding parameters to existing actions
without modifying their behavior,
89
searching for actions & teststo reuse,
180
"comment" statement, 16
commentsin atestplan, 16
compatibility
adding parameters to existing actions
without modifying their
behaviour, 89

compiler
using parameter blocks with a C
compiler, 103
using parameter blocks with a C++
compiler, 106
controlling the flow of testing, 13
branching on afailing test, 21
branching on a passing test, 21
branching on an exception, 22
executing atest or test group only
once per testplan run, 23
flow control statements, 13
ignoring atest, 23
creating an action

inC, 102
in HP BASIC for Windows, 151
in HP VEE, 139
in National Instruments LabVIEW,
145
overview, 86
custom tool

adding to HP TestExec SL, 235

D

datatype

for parametersin actionscreated using
aC compiler, 104

for parametersin actionscreated using
a C++ compiler, 107

datalogging, 188

behavior, 189

configuring for use with a
Spreadsheet, 193

contents of adatalogging file, 196

disabling for atest, 192

disabling pass/fail statusfor atest, 192

format, 189

generating unique names for tests
when looping, 192

importing a datalogging file into
Microsoft Excel, 197

learning the pass/fail limits, 199

managing files, 200

overriding the default test name, 192

Index-3

passing information about test limits,
199
reformatting data that appearsin a
spreadsheet, 197
selecting the behavior & format, 192
setting options for entire testplan, 190
setting options for individual test, 191
troubleshooting problems with, 200
using with a spreadsheet, 193
using with Q-STATS programs, 199
debugging
atestplan, 43
actions used to control message-based
instruments, 282
C actions, 136
HP BASIC for Windows actions, 157
HP VEE actions, 142
using "dumpbin" to examineaDLL,
135
using the Watch window to debug a
testplan, 48
defining an action, 92
DLL
adding aC action to, 134
creating anew C action in, 121
how HP TestExec SL |ocates, 225
managing, 224
minimizing problems with, 228
situations that can cause problems
with, 226
symptoms associated with loading the
wrong, 227
DLL styleaction, 103

E

"=" (assignment operator), 16
error handling
in C actions, 111
in HP VEE actions, 142
exception
branching on, 22
handling in C actions, 111
expression in flow control statement
using arithmetic operatorsin, 17
using parenthesesin, 18

using relational operatorsin, 17
external symbol table, 202, 208

creating, 208

linking to, 209

removing link to, 209

F

failure ticket
printing automatically, 215
file
extensions, 221
initialization, 222
managing temporary files, 228
recommended locations, 223
file extensions, 221
fine-tuning atestplan, 52
fixture layer in switching topology
defining, 168
Fixturel D symbol in System symbol
table, 204
flagsin atestplan, 43
flow control statement, 13
"for...in", 15
"for...next", 14
"if...then...else", 14
"loop", 15
finding specific text in, 42
inserting into a testplan, 19
interacting with, 20
rulesfor using, 19
syntax for accessing symbols from,
20, 206
using arithmetic operatorsin, 17
using parenthesesin, 18
using relational operatorsin, 17
"for...in" statement, 15
format of datalogging, 189
selecting, 192
formatted strings. See "string
formatting”
"for...next" statement, 14

Index-4

G

global variable
using in atestplan, 33
whose scope is a sequence, 34
whose scope is the testplan, 33

H

hardware handler
specifying the polling interval for, 216
HP BASIC for Windows
related files that areinstalled, 152
HP BASIC for Windows action
creating, 151
creating a server program for, 153
debugging, 157
defining, 153
example, 156
restrictions on parameter passing, 152
HP TestExec SL
adding custom toolsto, 235
file & directory structure, 220
searching for actions & teststo reuse,
180
using with VXIplug& play, 241
HP VEE action
creating, 139
debugging, 142
defining, 140
error handling, 142
example, 140
executing on aremote system, 143
restrictions on parameter passing, 139
specifying the geometry for windows
in which actions appear, 143

1/O operations

viewing as the testplan runs, 28
"if...then...else" statement, 14
ignored test

using with variants, 23
ignoring atest during testplan

execution, 23

initialization file, 222

instrument
using actions to control message-
based instruments, 265
instruments
controlling viaVXIplug&play, 243
interactive controls & flagsina
testplan, 43

K

keyword, 100, 180
adding to an action, 100
associated with actions, 90
deleting from an action, 100

L

LabVIEW. See "National Instruments
LabVIEW"
languages you can useto create actions,
87
layer in switching topology
defining the fixture layer, 168
defining the system layer, 166
defining the UUT layer, 170
names of files, 160
learning pass/fail limitsfor datal ogging,
199
library
saving atest definitionin, 69
searching for itemsin, 180
specifying the search path for, 184
strategies for searching, 183
using to manage tests & actions, 180
limits
parameter types compatible with
limits checking, 97
specifying for atest, 67
limits checker
specifying which to use, 68
listing of testplans & system
information
finding specific text in, 41
generating, 40
printing, 41
Listing window, 39

Index-5

"loop" statement, 15

M

master keyword, 180
adding to the list, 101
deleting from thelist, 101
maximizing throughput in testplans, 53
message-based instrument
using actions to control, 265
module
adding to switching topology, 176
deleting from switching topology, 178
duplicating in switching topology, 178
modifying in switching topology, 177
ModuleType symbol in System symbol
table, 204
moving atestplan, 58
using search pathsto improve testplan
portability, 187
multi-UUT testing. See "Throughput
Multiplier"

N

National Instruments LabVIEW, 145
creating an action in, 145
defining an actionin, 148
example of an action, 149
list of custom Vs provided by HP,
147
restrictions on parameter passing in
actions, 146
setting interface options in actions,
150
node
in switching topology, 164
specifying which character separates
adjacent nodes, 167

O

On Fail Branch To feature, 22
operator interface
multi-UUT used with Throughput
Multiplier, 305
registering atestplan for use with, 36

registering a UUT for use with, 36
setting up, 215
specifying the association between
testplans & UUTS, 36
warning about flags left in testplans,
59
OperatorName symbol in System
symbol table, 204
optimizing the reliability of testplans,
52
option
specifying global optionsfor a
testplan, 35

P

parameter
adding to atest or test group, 62
adding to an action, 97
deleting a parameter to an action, 99
modifying aparameter to an action, 98
modifying for atest or test group, 62
parameter types compatible with
limits checking, 97
removing from atest or test group, 63
restrictions on passing in HP BASIC
for Windows, 152
restrictions on passing in HP VEE,
139
specifying for atest or test group, 62,
66
types used in actions, 95
viewing for actionsin atest or test
group, 67
parameter block
using with a C compiler, 103
using with a C++ compiler, 106
parameter replacement in formatted
strings, 254
parentheses in flow control statements,
18
pass/fail status of atest, controlling
during datalogging, 192
password
changing, 231
plug& play. See "V XIplug& play”

Index-6

polling interval for a hardware handler,
216
predefined actions provided with HP
TestExec SL, 86
preferred names in switching topology,
164
order of precedence, 165
profiler
running, 55
setting up prior to use, 54
using to optimize testplans, 54
viewing results in a spreadsheet, 56
viewing resultsin HP TestExec SL, 55
viewing resultsin Microsoft Excel, 56

Q
Q-STATS program

using datalogging with, 199
quick search for actions, 181

R

relational operatorsin flow control
statements, 17
reliability
optimizing testplans for, 52
replaceable parameters in formatted
strings, 254
Report window
enabling & disabling, 28
specifying what appearsin, 28
results
passing between tests or test groups,
71
reusable code
designing actions for reusability, 88
RunCount symbol in System symbol
table, 204
running
an entire testplan, 25
selected testsin atestplan, 26

S

search path
removing from list, 186

specifying for libraries, 184
specifying system-wide, 185
specifying testplan-specific, 186
using to improve testplan portability,
187
security
access privileges listed by group, 230
access to system resources, 230
changing a password, 231
controlling, 229
customizing the settings, 231
default settings, 229
user groups, 230
separator character
between adjacent nodes in the
switching topology, 167
sequence
finding specific text in, 42
Sequencel.ocals symbol table, 202
SerialNumber symbol in System
symbol table, 204
server program for HP BASIC for
Windows actions, 153
single-stepping
through atest, 46
through atestplan, 46
through actionsin atest, 47
Skip flag in atestplan, 44
skipping atest, 44
specifying the search path for libraries,
184
state
using to store switching data, 117
step-by-step search for actions, 181
stopping atestplan, 31
stream of trace information, 31
string formatting
data types supported for replaceable
parametersin, 259
error values returned when formatting
fals, 260
how it works, 258
overview, 254
types of operations, 255

Index-7

updating a string from its replaceable
parameters, 255
updating replaceable parameters from
astring, 256
use of replaceable parametersin, 254
usesfor, 264
using with arrays, 262
what happensif it fails, 260
switching
controlling during atest, 75
controlling with a C action, 114
namesof filesused intopology layers,
160
preferred names in topology, 164
watching nodes as tests execute, 50
switching action
creating, 76
deleting, 77
deleting a switching path in, 78
modifying a switching path in, 77
switching path
API for controlling, 115
controlling with a C action, 114
deleting, 78
modifying, 77
switching topology
adding amodule, 176
adding awire, 174
adding an dlias, 172
creating atopology layer, 171
defining the fixture layer, 168
defining the system layer, 166
defining the UUT layer, 170
deleting amodule, 178
deleting awire, 176
deleting an dlias, 175
documenting for auditing purposes,
211
duplicating an alias, wire, or module,
178
locations of files, 6
modifying a module, 177
modifying awire, 175
modifying an alias, 173
nodesin, 164

overview of defining, 160
preferred names, 164
specifying the location of the system
layer, 214
specifying the location of topology
files, 6
specifying which filesto use, 35
Switching Topology Editor
using, 171
switching topology layer
specifying the search path for, 184
symbol
adding to a symbol table, 207
deleting in a symbol table, 208
examining in a symbol table, 206
in external symbol table, 208
modifying in asymbol table, 207
syntax for accessing fromflow control
statements, 20, 206
symbol table, 202
adding a symbol, 207
creating an external, 208
deleting a symbol, 208
examining, 206
external, 202, 208
linking to an external, 209
list of, 202
list of predefined symbolsin System
symbol table, 204
modifying a symbol in, 207
removing link to an external, 209
Sequencelocals, 202
specifying the search path for, 184
syntax for accessing symbols from
flow control statements, 20, 206
System, 202
TestPlanGlobals, 202
TestStepL ocals, 202
TestStepParms, 202
watching symbolsastestsexecute, 49,
51
system administration
controlling system security, 229
initialization files, 222
managing temporary files, 228

Index-8

recommended locations for files, 223
setting up a system, 214
setting up an operator/automation
interface, 215
setting up auditing features, 217
specifying the default variant for new
testplans, 214
specifying the location of the system
layer for switching topology, 214
standard directories, 220
standard file extensions, 221
system layer in switching topology
defining, 166
System symbol table, 202
list of predefined symbolsin, 204
system-wide search path, 185

T

temporary file, 228

test
adding anew test to atestplan, 7
adding a parameter to, 62
adding actions to, 64
adding an existing test to atestplan, 8
branching on afailing, 21
branching on a passing, 21
breakpoint, 44
copying across testplans, 11
copying within atestplan, 11
documenting for auditing purposes,

212
examining or modifying, 9
executing only once per testplan run,
23

ignoring during testplan execution, 23
modifying a parameter for, 62
moving across testplans, 10
moving within atestplan, 9
passing results between, 71
removing a parameter from, 63
removing an action from, 68
running selected testsin atestplan, 26
saving atest definition in alibrary, 69
searching for in alibrary, 182

sharing a variable among the actions
in, 73
single-stepping through, 46
skipping, 44
specifying limits for, 67
specifying parametersfor, 66
specifying when using variants, 79
using to control switching, 75
viewing & printing contents of, 39
viewing parameters for actionsin, 67
viewing the test execution details, 81
watching while debugging, 48
test definition
savinginalibrary, 69
specifying the search path for, 184
Test Execution Details window
viewing, 81
test group
adding a parameter to, 62
adding actions to, 64
adding to atestplan, 7
copying across testplans, 11
copying within atestplan, 11
examining or modifying, 9
executing only once per testplan run,
23
modifying a parameter for, 62
moving across testplans, 10
moving within atestplan, 9
passing results between, 71
removing a parameter from, 63
removing an action from, 68
sharing a variable among the actions
In, 73
specifying parametersfor, 66
specifying when using variants, 79
viewing & printing contents of, 39
viewing parameters for actionsin, 67
test library
saving atest definitionin, 69
test limits
parameter types compatible with
limits checking, 97
specifying, 67

Index-9

TestInfoCode symbol in System symbol
table, 204
TestInfoString symbol in System
symbol table, 204
testplan
aborting, 32
adding a new test or test group, 7
adding avariant, 37
adding an existing test, 8
branching on afailing test, 21
branching on a passing test, 21
branching on an exception, 22
commentsin, 16
controlling the flow of testing, 13
creating, 2
debugging, 43
deleting avariant from, 38
documenting for auditing purpose,
211
examining or modifying atest or test
group, 9
executing atest or test group only
once per testplan run, 23
fine-tuning, 52
ignoring atest in, 23
interactive controls & flags, 43
loading, 25
maximizing throughput, 53
moving, 58
moving atest/test group across
testplans, 10
moving atest/test group within a
testplan, 9
optimizing reliability of, 52
renaming avariant, 37
running, 25, 26
running repetitively, 52
single-stepping through, 46
specifying global optionsfor, 35
specifying switching topology layers
for, 6
stopping, 31
using global variablesin, 33
using search pathsto improve testplan
portability, 187

using tests and test groups with
variants, 79
using variantsin, 37
viewing & printing contents of, 39
viewing results while running, 27
TestPlanGlobals symbol table, 202
testplan-specific search path, 186
TestStationl D symbol in System symbol
table, 204
TestStatus symbol in System symbol
table, 204
TestStepL ocals symbol table, 202
TestStepParms symbol table, 202
throughput
maximizing in testplans, 53
Throughput Multiplier, 287
adding UUT positions, 303
converting the testplan to amuilti-
UUT version, 300
creating the first UUT position, 299
effects on breakpoints & single-
stepping, 295
effects on datalogging, 295
effects on reporting, 295
effects on switching, 296
effects on testplan listings, 295
enabling, 298
example of amulti-UUT testplan, 292
list of symbols used by, 293
multi-UUT operator interface, 305
specifying multi-UUT options for
individual tests, 301
tool
adding custom tools to HP TestExec
SL, 235
topology. See "switching topology"
Trace flag in atestplan, 44
Trace window
default stream of trace information, 31
enabling & disabling, 29
specifying what appearsin, 30
specifying which stream of trace
information to view, 31
specifying which tests are traced, 30
using to view 1/O operations, 28

Index-10

tracing 1/O operations as the testplan
runs, 28
tracking software revisions, 210
troubleshooting
minimizing problems with DLLs, 228
situations that can cause problems
with DLLs, 226
symptoms associ ated with loading the
wrong DLL, 227

U

updating a string from its replaceable
parameters, 255
updating replaceable parametersfrom a
string, 256
user
adding anew, 232
adding anew group, 234
deleting, 233
modifying a group, 234
modifying an existing, 233
modifying privileges, 233
UUT layer of switching topology
defining, 170
UutPosld symbol, 294

\Y,

variable
sharing among actionsin atest or test
group, 73
using aglobal variable whose scopeis
asequence, 34
using aglobal variable whose scopeis
the testplan, 33
variant
adding to atestplan, 37
deleting, 38
renaming, 37
rules when copying tests/test groups
across testplans, 10, 12
specifying the default for new
testplans, 214
specifying variations on tests and test
groups when using, 79

using ignored tests with, 23
VEE action. See "HP VEE action"
\
list of custom National Instruments
LabVIEW Vs provided by HP,
147
V XlIplug& play
overview, 240
using actions to control instruments
viaVXIplug&play, 243
using with HP TestExec SL, 241

w

Watch window
inserting a switching node into, 50
inserting a symbol into, 49, 51
removing items from, 51
using as a debugging aid, 48

wire
adding to switching topology, 174
deleting from switching topology, 176
duplicating in switching topology, 178
modifying in switching topology, 175

Index-11

	1 Working With Testplans
	A Suggested Process for Creating a Testplan
	Preparing to Write the Testplan
	Writing the Testplan

	To Create a Testplan
	To Specify Switching Topology Layers for a Testplan
	Using Tests & Test Groups in Testplans
	To Add a New Test/Test Group
	To Add an Existing Test
	To Examine or Modify a Test/Test Group
	To Move a Test/Test Group Within a Testplan
	To Move a Test/Test Group Across Testplans
	To Copy a Test/Test Group Within a Testplan
	To Copy a Test/Test Group Across Testplans
	To Delete a Test/Test Group

	Controlling the Flow of Testing
	Using Flow Control Statements
	Which Flow Control Statements are Available?
	What is the Syntax for Expressions?
	Using Arithmetic Operators
	Using Relational Operators
	Using Parentheses

	What Are the Rules for Using Flow Control Statements?
	To Insert a Flow Control Statement into a Testplan
	Interacting with Flow Control Statements

	To Branch on a Passing Test
	To Branch on a Failing Test
	To Branch on an Exception
	To Execute a Test/Test Group Once Per Testplan Run
	To Ignore a Test

	Running a Testplan
	To Load a Testplan
	To Run an Entire Testplan
	To Run Selected Tests in a Testplan
	Viewing What Happens as a Testplan Runs
	Using the Report Window to Monitor Results
	To Enable/Disable the Report Window
	To Specify What Appears in the Report Window

	Using the Trace Window to Monitor I/O Operations
	To Enable/Disable the Trace Window
	To Specify Which Tests are Traced
	To Specify What Appears When Tests are Traced

	To Stop a Testplan
	To Abort a Testplan

	Other Tasks Associated with Testplans
	Using Global Variables in Testplans
	To Use a Global Variable Whose Scope is the Testplan
	To Use a Global Variable Whose Scope is a Sequence

	To Specify the Global Options for a Testplan
	To Specify Which Topology Files to Use
	Using Testplans & UUTs with an Operator Interface
	To Register a Testplan for an Operator Interface
	To Register a UUT for an Operator Interface

	Using Variants in Testplans
	To Add a Variant to a Testplan
	To Rename a Variant in a Testplan
	To Delete a Variant from a Testplan

	Examining Testplans & System Information
	Overview
	Which Kinds of Information Can I Examine?
	To List Testplans & System Information
	To Print Listings of Testplans & System Information
	To Find Specific Text in Listings
	To Find Specific Text in Sequences & Lists of Actions

	Debugging Testplans
	Using Interactive Controls & Flags
	Single-Stepping in a Testplan
	Single-Stepping Through Tests
	Overview
	To Single�Step Through the Tests in a Testplan
	To Cancel Single�Stepping Through the Tests in a Testplan

	Single-Stepping Through Actions
	Overview
	To Single�Step Through Actions

	Using the Watch Window to Aid Debugging
	Overview
	To Insert a Symbol into the Watch Window
	To Insert a Switching Node into the Watch Window
	To Insert an Instrument into the Watch Window
	To Remove an Item from the Watch Window

	Fine�Tuning Testplans
	Optimizing the Reliability of Testplans
	Optimizing the Throughput of Testplans
	Suggested Ways to Make Testplans Run Faster
	Using the Profiler to Optimize Testplans
	To Set Up the Profiler
	To Run the Profiler
	To View Profiler Results in HP�TestExec SL
	To View Profiler Results in a Spreadsheet

	Moving a Testplan

	2 Working With Tests & Test Groups
	Specifying Parameters for a Test/Test Group
	To Add a Parameter to a Test/Test Group
	Modifying a Parameter for a Test/Test Group
	To Remove a Parameter from a Test/Test Group

	Specifying Actions for a Test/Test Group
	To Add an Action to a Test/Test Group
	To Specify Parameters for Actions in a Test/Test Group
	To View Parameters for Actions in a Test/Test Group
	To Specify the Limits for a Test
	To Remove an Action from a Test/Test Group

	To Save a Test Definition in a Library
	To Pass Results Between Tests/Test Groups
	To Share a Variable Among Actions in a Test/Test Group
	Controlling Switching During a Test/Test Group
	Overview of Creating a Switching Action
	To Create a Switching Action
	To Delete a Switching Action
	To Modify a Switching Path in a Switching Action
	To Delete a Switching Path in a Switching Action

	Specifying Variations on Tests/Test Groups When Using Variants
	Overview
	To Specify a Test/Test Group’s Characteristics for Each Variant

	Viewing the Test Execution Details
	Overview
	To View the Test Execution Details

	3 Working With Actions
	Things to Know Before Creating Actions
	How Do I Create Actions?
	Which Languages Can I Use to Create Actions?
	Improving the Reusability of Actions
	Designing for Reusability
	Documenting Your Actions
	Choosing Names for Actions
	Entering Descriptions for Actions
	Entering Descriptions for Parameters
	Choosing Keywords for Actions

	To Define an Action
	Using Parameters with Actions
	Types of Parameters Used With Actions
	To Add a Parameter to an Action
	To Modify a Parameter to an Action
	To Delete a Parameter to an Action

	Using Keywords with Actions
	To Add a Keyword to an Action
	To Delete a Keyword from an Action
	To Add a Master Keyword to the List
	To Delete a Master Keyword from the List

	Creating Actions in C
	Overview of the Process
	Writing C Actions
	Using Parameter Blocks With a C Compiler
	Using Parameter Blocks With a C++ Compiler

	Exception Handling in C Actions
	Using C Actions to Control Switching Paths
	Overview
	Using API Functions to Control Switching Pathss
	Using States to Store Switching Data

	Adding Revision Control Information for Actions
	Example of Creating a C Action in a New DLL
	Defining the Action
	Specifying the Development Environment Options
	Specifying the Path for Libraries
	Specifying the Path for Include Files

	Creating a New DLL Project
	Specifying the Project Settings
	Writing Source Files for the Action Code
	Adding Source Files to the Project
	Verifying the Project’s Contents
	Choosing Which Configuration to Build
	Building the Project
	Copying the DLL to Its Destination Directory
	Overview
	Creating a Custom Tool to Copy the DLL
	Using the Custom Tool to Copy the DLL

	Example of Defining a C Action
	Adding a C Action to an Existing DLL
	Debugging C Actions

	Creating Actions in HP VEE
	Restrictions on Parameter Usage in HP VEE
	Defining an HP VEE Action
	Example of an HP VEE Action
	Debugging HP VEE Actions
	Error Handling in HP VEE
	Controlling the Geometry of HP�VEE Windows
	Executing HP VEE Actions on a Remote System

	Creating Actions in National Instruments LabVIEW
	Related Files
	Restrictions on Parameter Passing
	Defining a National Instruments LabVIEW Action
	Example of a National Instruments LabVIEW Action
	Setting Interface Options for National Instruments LabVIEW

	Creating Actions in HP BASIC for Windows
	Related Files
	Restrictions on Parameter Usage in HP BASIC for Windows
	Defining an HP BASIC for Windows Action
	Creating an HP BASIC for Windows Server Program
	Example of an HP BASIC for Windows Action
	Debugging HP BASIC for Windows Actions

	4 Working with Switching Topology
	Defining the Switching Topology
	Overview
	Matching Physical Hardware to Logical Names
	Where Do the Names of Switching Paths Come From?
	Using Aliases to Simplify the Names of Switching Paths
	When Should I Specify Wires?
	What Happens If a Node Has Multiple Names?
	How Do I Specify the Preferred Name for a Node?

	Defining the System Layer
	Defining the Fixture Layer
	Defining the UUT Layer
	Using the Switching Topology Editor
	To Create a Topology Layer
	Using Aliases
	To Add an Alias
	To Modify an Alias
	To Delete an Alias

	Using Wires
	To Add a Wire
	To Modify a Wire
	To Delete a Wire

	Using Modules
	To Add a Module
	To Modify a Module
	To Delete a Module

	Duplicating an Alias, Wire, or Module

	5 Working with Libraries, Datalogging, Symbol Tables, & Auditing
	Using Test & Action Libraries
	How Keywords Simplify Finding Items in Libraries
	Searching for Items in Libraries
	Searching for Actions in a Library
	Searching for Tests in a Library

	Strategies for Searching Libraries
	Specifying the Search Path for Libraries
	To Specify System�Wide Search Paths for Libraries
	To Specify Testplan�Specific Search Paths for Libraries
	To Remove a Path from the List of Search Paths

	Using Search Paths to Improve Testplan Portability

	Using Datalogging
	What Happens During Datalogging?
	What is the Behavior & Format for Logged Data?
	Controlling How Datalogging Works
	To Set the Datalogging Options for an Entire Testplan
	To Change the Datalogging Options for an Individual Test
	To Select the Datalogging Behavior and Format

	Using Datalogging with a Spreadsheet
	To Configure Datalogging for Use With a Spreadsheet
	What’s Inside a Datalogging File Formatted for Spreadsheets?
	How Does the Data Appear in a Spreadsheet?
	Why You May Need to Reformat the Data
	To Import a Datalogging File into Microsoft Excel 97

	Using Datalogging with Q-STATS Programs
	To Set the Learning Feature & Pass Limits Information
	Restrictions on the Names of Tests

	Managing Datalogging Files
	Troubleshooting Problems with Datalogging

	Using Symbol Tables
	About Symbol Tables
	Predefined Symbols in the System Symbol Table
	How Symbols Are Defined in Flow Control Statements
	Programmatically Interacting with Symbols
	To Examine the Symbols in a Symbol Table
	To Add a Symbol to a Symbol Table
	To Modify a Symbol in a Symbol Table
	To Delete a Symbol from a Symbol Table
	Using External Symbol Tables
	To Create an External Symbol Table
	To Link to an External Symbol Table
	To Remove a Link to an External Symbol Table

	Using Auditing
	To Document Testplans, Actions & Switching Topology
	To Document Tests
	To View or Print Auditing Information

	6 System Administration
	System Setup
	Specifying the Location of the System Topology Layer
	Specifying the Default Variant for a New Testplan
	Setting Up an Operator or Automation Interface
	Overview
	Setting Up an Automation Interface to Start Automatically
	Starting an Automation Interface Created in Visual�Basic
	Starting an Automation Interface Created in Visual�C++

	Setting Up Automatic Printing of Failure Tickets
	Specifying the Polling Interval for Hardware Handlers

	Setting Up the Auditing Features
	Controlling the Appearance of the Status List
	Controlling the Operation of the Revision Editor

	Directories and Files
	Standard Directories
	Standard File Extensions
	Initialization Files
	Recommended Locations for Files
	Managing DLLs
	How HP TestExec SL Searches for DLLs
	Situations That Can Cause Problems With DLLs
	Symptoms Associated with Loading the Wrong DLL
	Minimizing the Problems with DLLs

	Managing Temporary Files

	Controlling System Security
	Using the Default Security Settings
	User Groups
	System Resources
	Group Access Privileges

	Customizing Security Settings
	To Change a Password
	To Add a New User
	To Modify an Existing User
	To Delete an Existing User
	To Modify a User's Privileges
	To Add a New Group of Users
	To Modify an Existing Group of Users

	Adding Custom Tools to HP TestExec SL
	Syntax for Adding Custom Tools
	To Add Entries to the Tools Menu

	7 Working with VXIplug&play Drivers
	What is VXIplug&play?
	How Do HP TestExec SL & VXIplug&play Work Together?
	How Do Actions Control Instruments via VXIplug&play?
	To Control a VXIplug&play Instrument from an Action
	Configuring HP�TestExec SL to Use VXIplug&play Instruments
	Creating the Action
	Using the Action in a Test

	Beyond VXIplug&play

	8 Using String Formatting
	What is a Formatted String?
	The Two Types of Formatting Operations
	Updating a String from its Replaceable Parameters
	Updating Replaceable Parameters from a String

	How Does String Formatting Work?
	Which Data Types are Supported for Replaceable Parameters?
	What Happens if “Update Parameters from String” Fails?
	Notes About String Formatting
	How are Formatted Strings Useful?

	9 Using Actions to Control Message�Based Instruments
	Overview of Controlling Message�Based Instruments
	Why Use Actions to Control Message�Based Instruments?
	When Can I Use Actions to Control Message�Based Instruments?

	Using Actions to Control Message�Based Instruments
	Adding the Instrument to the Switching Topology
	Which Actions Does HP TestExec SL Provide?
	Choosing Which Action to Use
	Setting Up the Action
	Copying the Action Definition
	Customizing the Action Definition
	Why Did You Customize the Action Definition?
	Using the Action in a Testplan
	What if the Instrument Returns a Response?
	Choosing Which Action to Use
	Setting Up the Action
	Customizing the Action Definition

	Debugging Actions That Control Message�Based Instruments

	Notes for Advanced Users

	10 Testing Multiple UUTs
	About Multi�UUT Testing
	Why Test Multiple UUTs?
	What Makes Multi�UUT Testing Faster?
	How Does HP TestExec SL Test Multiple UUTs?
	What Must You Do to Test Multiple UUTs?
	Example of a Multi�UUT Testplan
	Symbols Used by Multi-UUT Testing
	More About UutPosId
	Multi�UUT Effects on Datalogging
	Multi�UUT Effects on Reporting
	Multi�UUT Effects on Testplan Listings
	Multi�UUT Effects on Breakpoints & Single�Stepping
	Multi�UUT Effects on Switching

	Testing Multiple UUTs
	Enabling Multi�UUT Testing
	Creating the First UUT Position
	Creating a UUT Topology Layer for the First UUT
	Creating & Debugging a Testplan for the First UUT Position

	Converting the Testplan to a Multi�UUT Version
	Globally Enabling Multi�UUT Testing
	Controlling the Flow of Testing
	Adding Flow Control Statements
	Specifying Multi�UUT Options for Individual Tests

	Adding UUT Positions to the Testplan
	Adding a New UUT Position
	Running the Testplan & Debugging the New UUT Position

	The Multi�UUT Operator Interface
	Compatibility of Single� & Multi�UUT Operator Interfaces
	Running a Multi�UUT Testplan on a Single�UUT Interface
	Running a Single�UUT Testplan on a Multi�UUT Interface

	Some Differences Between the Modules
	Unique Features of the Multi�UUT Operator Interface
	Variable mbMultiUutTestplan
	Shortcuts When Accessing Symbols in Symbol Tables
	Potential Differences in the Indexing of Arrays

	Changing the Number of UUT Positions
	Considerations for Factory Automation
	How are Serial Numbers Read?
	What if the Testplan Reads Serial Numbers from UUTs?
	What if the Testplan Gets the Testing Status from UUTs?

	Index

